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Abstract

 

—This article reviews recent investigations on the phenomenon of Bose–Einstein condensation of
dilute gases. Since the experimental observation of quantum degeneracy in atomic gases, the research activity
in the field of coherent matter-waves literally exploded. The present topical review aims to give an introduction
into the thermodynamics of Bose–Einstein condensation, a general overview over experimental techniques and
investigations, and a theoretical foundation for the description of bosonic many-body quantum systems.
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CHAPTER 1.
INTRODUCTION

In classical physics, light is a wave and matter con-
sists of particles. At the beginning of the twentieth cen-
tury, new experiments like the discovery of the photo
effect shattered the common view of life. Those obser-
vations could only be explained by the assumption that
light consists of quantized energy packets, similar to
particles. The feature that light sometimes appears as a
wave and sometimes as a particle seemed incompatible.
This duality of light was understood within the frame-
work of the newly developed 

 

quantum theory

 

 which
benefited from important contributions from scientists
including Max Planck, Niels Bohr, Werner Heisenberg,
and Albert Einstein. Together with Einstein’s 

 

theory of
relativity

 

 the quantum theory today constitutes the fun-
damental pillar of modern physics. Louis de Broglie
applied the duality principle also to material particles.
According to him, very cold particles should under cer-
tain conditions behave like waves whose wavelengths
increase as their velocity drops. The particle is delocal-
ized over a distance corresponding to the de Broglie
wavelength. These features were soon discovered
experimentally and are today even used commercially,
e.g., in electron microscopes.

The 

 

laser

 

 was discovered in 1956. In a laser, light
particles are forced to oscillate synchronously, i.e.,
coherently. By analogy, we may now raise the question
if a similar phenomenon can occur for material parti-
cles, and if it should in principle be possible to con-
struct an 

 

atom laser

 

. Such a device would emit coherent
matter-waves just like the laser emits coherent light.
When a gas is cooled down to very low temperatures,
the individual atomic de Broglie waves become very
long and, if the gas is dense enough, eventually overlap.

If the gas consists of a single species of bosonic parti-
cles all being in the same quantum state, the de Broglie
waves of the individual particles constructively inter-
fere and build up a huge coherent matter-wave. The
matter-wave is described by a single quantum mechan-
ical wavefunction exhibiting long range order and hav-
ing a single phase. If this wavefunction is formed in a
trap, all the atoms pile up in its ground state. The tran-
sition from a gas of individual atoms to the mesoscopic
quantum degenerate many-body state occurs as a phase
transition and is named after Bose and Einstein who
calculated the effect as early as 1924 [1, 2] 

 

Bose–Ein-
stein condensation

 

 (BEC).

The vast interest in Bose–Einstein condensation
arises partly from the fact that this phenomenon
touches several physical disciplines thus creating a link
between them: In thermodynamics BEC occurs as a
phase transition from gas to a new state of matter, quan-
tummechanics view BEC as a matter-wave coherence
arising from overlapping de Broglie waves of the atoms
and draw an analogy between conventional and “atom
lasers,” quantumstatistics explain BEC as more than
one atom sharing a phase space cell, in the quantum
theory of atomic traps many atoms condense to the
ground state of the trap, in quantum field theory BEC is
commonly related to spontaneous symmetry breaking.

The experimental verification of Bose–Einstein
condensation has been a long cherished dream in phys-
ics. On one hand, several phenomena have been related
to BEC in the past, e.g., the phenomenon of superfluid-
ity in liquid helium and the superconductivity. On the
other hand, those strongly interacting systems are not
pure enough to clearly identify the role of the Bose con-
densation. A few years ago, however, Bose–Einstein
condensation in weakly interacting confined atomic

Chapter 16. Coherence and Atom Lasers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770
16.1. Interference and Josephson Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770
16.2. Conditions on Atom Laser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772
16.3. Nonadiabatic Dynamics of Atoms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773
16.4. Scale Separation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775
16.5. Magnetic Semiconfinement of Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777

Chapter 17. Bose–Einstein Condensate in Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780
17.1. Differences between Liquids and Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780
17.2. Definition of Superfluid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .782
17.3. Spectrum of Collective Excitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785
17.4. Dynamic Structure Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .787
17.5. Measurement of Condensate Fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788

Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791



 

LASER PHYSICS

 

      

 

Vol. 11

 

      

 

No. 6

 

      

 

2001

 

BOSE–EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES 663

 

gases was achieved in experiments [3–6]. The observa-
tion of Bose–Einstein condensation has now been con-
firmed by more than twenty groups worldwide and trig-
gered an enormous amount of theoretical and experi-
mental work on the characterization of Bose-
condensed gases. While the early work focused on the
equilibrium thermodynamics of condensates close to
the phase transition, very soon the dynamical response
of the condensate wavefunction to perturbations was
subject of thorough investigations. Subsequently, the
general attention turned to the study of the superfluid
characteristics of BECs, phenomena of quantum trans-
port and the interaction of BECs with light. Meanwhile,
exotic states like multiple species condensates [7, 8]
and vortices [9, 10] have been created, Feshbach colli-
sion resonances have been found [11–13], various
kinds of atom lasers have been constructed [14–18],
BEC interferometers have been realized [19], experi-
ments on diffraction of BECs have been carried out
[20], nonlinear matter-wave interactions [21] and mat-
ter-wave amplification [22–24] have been observed.

One of the most exciting features is the possibility
to construct atom lasers. The technical advances made
in the past few years in controlling and manipulating
matter-waves have raised a new field called atom
optics. Nearly all optical elements which are used to
manipulate light beams have found their atom-optical
counterpart within the past ten years, including mirrors,
lenses, waveguides, acousto-optical modulators, and so
on. The occurrence of large-scale coherent quantum
objects like BECs and atom lasers will definitively lead
to a modernization of the fields of atomic interferome-
try, holography, lithography and microscopy. Colli-
sions between atoms add a rich variety of phenomena
to the field of coherent matter-wave optics where they
play a role similar to the role played by atom–photon
interactions in quantum and nonlinear optics. Since the
experimental observation of matter-wave four-wave
mixing [21] the field of nonlinear matter-wave optics
[25] is evolving at very high speed.

The characteristics (shape, stability, quantum deple-
tion, …) and the dynamics (superfluidity, nonlinear
excitations, …) of BECs are largely governed by inter-
actions between the atoms. The importance of atomic
collisions for BEC turns them into interesting subject
for studies. Low-energy scattering phenomena, like the
recently found Feshbach collision resonances [11, 12]
may be used to coherently couple a bound state of two
atoms to the unbound continuum [26]. This is particu-
larly interesting for the development of techniques
capable of producing ultracold molecules right inside a
trap (ultracold chemical engineering), or even to pro-
duce molecular BECs.

Finally, the field of atomic quantum optics is being
launched with many interesting theoretical predictions
and ideas. Atomic quantum optics could be defined as
the matter-wave counterpart of quantum optics with
light fields. In analogy, one might expect the possibility

of building up “nonclassical” quantum correlations,
e.g., Schrödinger cat like quantum states in a truly
mesoscopic quantum system (expanded BEC wave-
functions may easily range up to millimeter sizes) [27].
Those states have been studied in various quantum
optical systems. But even more important is the possi-
bility of coherently coupling the optical, motional, and
internal degrees of freedom and therefore the entangle-
ment of the related modes. In such systems, quantum
optics of laser modes (Cavity QED) and matter-wave
optics will merge. There are already several ideas about
the implementation of mutual coherent quantum con-
trol between optical and matter-wave modes [28], and
an ultracold version of the Correlated Atomic Recoil
Laser (CARL), an atomic analogue of the Free-Elec-
tron Laser (FEL), may play the role of an interface
between optical and matter-wave fields [29].

This topical review is organized as follows. The
introduction into the basic notions of the thermody-
namics of Bose–Einstein condensation (Chapter 2) is
brief, since many excellent papers and textbooks have
been published on this subject. Chapter 3 reviews
experimental approaches to BEC and points out the
essential techniques to achieve and probe condensates.
These have been covered by several review articles as
well, so that we just give a short overview. Ever since
the first achievement of BEC in a dilute gas, the
experimental progress has been very fast. Almost every
month a new milestone-experiment is published and
any attempt of writing a review is hence outdated at the
time of publication. Nevertheless, we believe that a
review of the recent experiments is helpful to show the
state of the art in BEC manipulation and to point out the
challenges which still lie ahead. We devoted Chapters 4,
5 and 6 to this subject.

There are two good reviews discussing the physics
of trapped Bose–Einstein condensates [30, 31]. The
theoretical part of our review differs from the latter in
several aspects. First of all, we thoroughly investigate
those principal notions, whose discussion is rarely met
in literature but which are crucial to answer such basic
questions as: What is Bose–Einstein condensation actu-
ally and what are the mathematically correct criteria for
this phenomenon? What is the relation of Bose conden-
sation to coherence and to gauge symmetry breaking?
What is the true meaning of the famous Gross–Pitae-
vskii equation? Is it possible to produce non-ground-
state condensates?

Trapped atoms compose a nonlinear nonuniform
system, whose description is essentially more compli-
cated than that of uniform systems. We explain in more
details than usually done mathematical techniques
helping to treat such nonlinear and nonuniform prob-
lems. This especially concerns those original methods
that have been developed recently and which cannot be
found in other reviews.

Our paper contains some fresh topics that have not
been reviewed earlier. Among these are: the stratifica-
tion of condensate components moving with respect to
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each other; resonance formation of topological coher-
ent modes and critical effects that can arise during this
resonance process; nonadiabatic dynamics of trapped
atoms and their escape from a trap.

Finally, in Chapter 17, the problems of describing
and measuring Bose–Einstein condensate in quantum
liquids, such as superfluid helium, are discussed. This
makes it possible to better understand analogies and
differences between liquids and gases.

CHAPTER 2.
BASIC NOTIONS

The classical approach to statistical mechanics
starts with Boltzmann’s probabilistic analysis of the
velocity distribution of an ideal gas. For a gas com-
posed of particles of mass 

 

m

 

 at temperature 

 

T

 

, the
velocity distribution is given by the well-known 

 

Max-
well–Boltzmann

 

 (MB) law [32]

(2.1)

where 

 

k

 

B

 

 is the Boltzmann constant. The Maxwell–
Boltzmann law was first experimentally tested by Otto
Stern in 1920 using a primitive atomic beam and a
time-of-flight technique based on a velocity-selective
rotating drum. With the advent of laser spectroscopy,
the MB law and its limitations could be tested with
highly improved precision. This law describes well the
behavior of weakly interacting atoms at high tempera-
tures. Deviations from it are insignificant until quantum
mechanical effects assert themselves, and this does not
occur until the temperature becomes so low that the
atomic de Broglie wavelength becomes comparable to
the mean distance between particles. For a gas in equi-
librium the characteristic wavelength (

 

"

 

 = 

 

h

 

/2

 

π

 

 is
Planck’s constant) is

(2.2)

For a general system with density 

 

n

 

, the mean distance
between particles is 

 

n

 

–1/3

 

. Quantum effects are expected
to show up for 

 

n

 

–1/3

 

 ~ 

 

λ

 

dB

 

(

 

T

 

), so that the boundary to this
regime is defined by

(2.3)

For example, an atomic gas at 900 K and 

 

n

 

 ~ 10

 

16

 

 cm

 

–3

 

is safely within the classical regime, since 

 

n

 

–1/3

 

 ~
10

 

6

 

 cm 

 

@

 

 

 

λ

 

dB

 

 =10

 

–9

 

 cm. To witness quantum effects
one needs atoms at low temperature and relatively high
density. For most gases, not for polarized hydrogen
(H

 

↑

 

), lowering the temperature or increasing the den-
sity promotes the system to liquidity before the quan-
tum regime is reached. Even for liquid helium, obvi-
ously a quantum system, the problem becomes com-
plex when we face a strongly interacting liquid.

g v( )
m

2πkBT
-------------------- 

  3 mv2

2kBT
------------– 

  ,exp=

λdB
2π"

2

mkBT
--------------.=

kBT n( )
2π"

2

m
------------n2/3.=

 

All particles of the quantum world are either 

 

bosons

 

with integer spin or 

 

fermions

 

 with half-integer spin.
Fermions do not share a quantum state, because they
must follow Pauli’s exclusion principle. They obey a
quantum statistical distribution called 

 

Fermi–Dirac

 

distribution. In contrast, bosons enjoy sharing a quan-
tum state and even encourage other bosons to join them
in a process called bosonic stimulation. Bosons follow
a quantum statistical distribution called 

 

Bose–Einstein

 

distribution (BE). In this article, we will mainly focus
on the Bose–Einstein distribution. The basic difference
between MB statistics and BE statistics is that the
former applies to identical particles that are distin-
guishable from one another in some way, while the lat-
ter describes identical indistinguishable particles. For
Bose–Einstein statistics, one can derive [33] the Bose–
Einstein distributed occupation number for a nonde-
generate quantum state at energy 

 

ε

 

 when the system is
held at temperature 

 

T

 

,

(2.4)

where we used the short-hand notation 

 

β

 

 

 

≡

 

 1/

 

k

 

B

 

T

 

. The
chemical potential 

 

µ

 

 is an important parameter of the
system, which helps normalizing the distribution 

 

f

 

(

 

ε

 

) to
the total number of particles,

(2.5)

Similarly, the total energy of the system is given by

(2.6)

A very remarkable effect occurs in a bosonic gas at
a certain characteristic temperature: below this temper-
ature a substantial fraction of the total number of parti-
cles occupies the lowest energy state, while each of the
remaining states is occupied by a negligible number of
particles. Above the transition temperature the macro-
scopic observables of the gas, like pressure, heat capac-
ity, etc., receive contributions from all states with the
appropriated statistical weight without preference for
any specific state. Below the transition temperature, the
observables are altered by the macroscopic occupation
of the ground state, which results in dramatic changes
in the thermodynamic properties. The phase transition
is named after Shandrasekar Bose [1] and Albert Ein-
stein [2] 

 

Bose–Einstein Condensation

 

 (BEC).

 

2.1. Bose–Einstein Condensation of Ideal Gas

 

One of the key points in understanding BEC is the
behavior of the chemical potential 

 

µ

 

 at very low tem-
peratures. The chemical potential is responsible for the
stabilization of the large number of atoms in the ground
state 

 

N

 

0

 

. A system of a large number 

 

N

 

 of noninteract-
ing bosons condenses to the ground-state as the temper-

f ε( )
1

eβ ε µ–( ) 1–
------------------------,=

N f ε( ).
ε
∑=

E ε f ε( ).
ε
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ature goes to zero, N0  N. The Bose–Einstein
distribution function (2.4) gives the ground state popu-
lation, εp = 0, in the zero-temperature limit, N =

 = –1/βµ, or in terms of the fugacity

Z = eβµ,

(2.7)

We should also note that the chemical potential in a
bosonic system must always be lower than the ground-
state energy, in order to guarantee non-negative occu-
pancy f(ε) of any state. Z ~ 1 denotes macroscopic
occupation of the ground state. We define the critical
temperature for Bose–Einstein condensation via the
occupancy of the ground state. Above this temperature
the occupancy of the ground state is not macroscopic,
below this point it is.

For a noninteracting Bose gas with N particles of
mass m confined in a hard-wall box of volume V = L3

the critical temperature for BEC can be calculated by
Eq. (2.3). The boundary conditions require that the
momenta satisfy pj = 2π"lj/L, where j = x, y or z and lj
are integers. Each state is labeled by a set of three inte-
gers (lx , ly , lz). In the thermodynamic limit, the sum over
all quantum states may be converted to an integral over
a continuum of states,

(2.8)

For a free gas with energy ε = p2/2m, we can derive the
density of states ρ(ε) from the normalization of the
phase space,

(2.9)

The density of states basically depends on the geometry
of our system. For a homogeneous system we find

ρ(ε) = 2π V/h3 , but we can easily extend this
result to inhomogeneous systems (Section 2.2). We
should, however, keep in mind that the density of states
approach is an approximation which might not be valid
for experiments with limited numbers of atoms (Sec-
tion 2.5). Using the occupation number f(ε) for the
Bose–Einstein distribution (2.4), in the thermodynamic
limit, we calculate the total number of particles,

(2.10)

where the ground state population N0 is explicitly
retained. In the process of converting the sum into an

integral (2.8) the density of states goes to zero
approaching the ground state. This error is corrected by
adding a contribution N0 to the integral. At this point,
we introduce the Bose function that will help to sim-
plify the notation by

(2.11)

and its integral representation

(2.12)

where Γ(η) denotes the Gamma function. With this def-
inition, Eq. (2.10) reads

(2.13)

We can use Eq. (2.13) to calculate the critical tempera-

ture , defined through N0  0 and µ  0. Above

the phase transition, T > , the population is distrib-
uted over all the states, each state being weakly occu-

pied. Below  the chemical potential is “pinned” at
µ = 0 and the number of particles occupying the excited
states is

with g3/2(1) = 2.612. Since N0 + Ntherm = N, the number
of particles in the ground state becomes

(2.14)

which is the fraction of the atomic cloud being con-
densed in the ground state. The abrupt occurrence of a

finite occupation in a single quantum state at  indi-
cates a spontaneous change in the system and a thermo-
dynamic phase transition. We will come back to this in
Section 2.7.

2.2. Thermodynamics of Ideal Confined Bose Gas

If the atoms are confined in a spatially varying

potential, the critical temperature  can be signifi-
cantly altered. The critical temperature depends on the
general shape and on the steepness of the potential. We
consider N particles of an ideal Bose gas distributed
over various quantum states of an arbitrary potential.
The occupation number f(ε) of particles in an energy
level ε is still given by (2.4), the ground state energy is
set to zero. In the thermodynamic limit, the relation
between the chemical potential and the total number of
particles is given by generalization of Eq. (2.10), with
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the appropriate density of states ρ(ε). The density of
states for an arbitrary confining potential U(r) can be
found by a generalization of the calculation for the free
gas. The volume in phase space between the surfaces of
energy ε and ε + dε is proportional to the number of
states in that energy interval. However, the external
potential limits the space available to the gas. The den-
sity of states is calculated in analogy to Eq. (2.9) and
yields [34, 35]

(2.15)

where V*(ε) is the available space for particles with
energy ε. We assume a generic power-law potential
confining an ideal Bose gas in α dimensions,

(2.16)

and define a parameter describing the confinement
power of the potential,

(2.17)

Although the temperature is the basic thermodynamical
state variable, the system needs to be characterized by
other variables. Heat is not a state variable, because the
amount of heat required to raise the temperature of the
system depends on the way the heat is transferred. The
heat capacity quantifies the ability of the system to
retain energy. In conventional systems, the heat
capacity is typically either given at constant volume or
at constant pressure. With this specification heat
capacities are extensive state variables. When crossing
a phase transition, the temperature dependence of the
heat capacity measures the degree of changes in the
system above and below the critical temperature and
provides valuable informations about the type of phase
transition.

The total energy of the system is given by

(2.18)

For a confined gas, volume and temperature are con-
nected, and the concept of pressure is somewhat vague.
In this case we cannot refer to heat capacity at constant
volume or constant pressure. However, we may define
the heat capacity at a fixed number of particles,

(2.19)

ρ ε( ) 2π 2m
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C T( )
∂E T( )
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--------------.=

Keeping the implicit temperature dependences of the
thermodynamic variables in mind, we can evaluate this
derivative:

(2.20)

where the derivative of the chemical potential from

above T   is

(2.21)

It is especially interesting to compare the disconti-
nuity of the heat capacity and of its derivative ∂C(T)/∂T
for various potential power laws and dimensions of
confinement, since this may clarify the nature of the
phase transition. The thermodynamic quantities take a
particularly simple form for power law potentials. The
calculations are analogous to those carried out for
homogeneous Bose gases (last section), and we restrict
ourselves here to giving the general results for the ther-
modynamic quantities [35, 36], e.g., internal energy E
and heat capacity C:

(2.22)

The Bose functions at zero chemical potential are just
the familiar Rieman zeta functions, gη(1) = ζ(η). The
expression for the critical temperature for N particles
confined in a generic power-law potential in α dimen-
sions reads

(2.23)

To evaluate the temperature dependence of the thermo-
dynamic variables, following K. Huang [32], we calcu-
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late the fugacity Z(T) = eβµ from the second equation
of (2.22). For T > Tc we derive the fugacity as the root
of gη(Z) = gη(1)(Tc/T)η and for T < Tc the fugacity is
simply Z = 1.

Let us give two examples for three-dimensional
confinement, α = 3. The homogeneous 3D box poten-
tial inside a volume V is obtained from the power-law
formula by setting ti  ∞ so that η ≡ 3/2. Evaluating
the density of states (2.15), we find N = N0 +

g3/2(Z)V/ .

For an anisotropic harmonic potential, U(r) =

 +  + , we have η ≡ 3. We intro-

duce the geometrically averaged secular frequency
ωtrap ≡ (ωxωyωz)1/3, and the size of the ground state

atrap = . Evaluating the density of states
(2.15), we find N = N0 + (kBT/"ωtrap)3g3(Z). The values
for confinement power, critical temperatures, heat
capacity and its discontinuity at the phase transition for
several potential configurations are shown in Fig. 1 and
summarized in Table 1.

Table 1 shows that steeper potential wells (i.e.,

smaller a, b, and c) give higher values for . The crit-
ical temperature also depends on the confinement
power of the potential

(2.24)

Larger values of the confinement power result in higher

. A strongly confining potential can lead to quantum
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degeneration at much higher critical temperatures and
greatly facilitate experimental efforts to achieve BEC.
At a given temperature, a strongly confining potential
reduces the minimum number of trapped particles
required for condensation.

It is also interesting to note, that from the values pre-
sented in Table 1, the changes in heat capacity at the
phase transition are larger for any power-law potential
than for a rigid wall container. This is due to the fact
that increasing the energy of the gas requires to work
against the confining potential.

2.3. Low-Dimensional Systems

The trapping potentials can technically be designed
to be very anisotropic, reaching almost two-dimen-
sional pancake-shaped or one-dimensional needle-
shaped configurations. The thermodynamics for such
systems can easily be formulated as limiting cases of
the general formulae presented in the last section
[36, 37]. We will first discuss a Bose gas confined in a one-

dimensional power law potential, U(x) = . In this

case, the confinement power (2.17) reads η = 1/t + 1/2.
From the general formula for the critical temperature
(2.23) we get

(2.25)

According to the properties of the zeta function,
gη(1) = ζ(η) is finite only if t < 2. Therefore, the one-
dimensional confined gas will exhibit BEC only if the
potential power is less than 2, i.e., only if the external
potential is more confining than a parabolic potential.
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Table 1.  Critical temperature, condensed fraction, heat capacity and its discontinuity at the phase transition for various trap-
ping potentials. V denotes a three-dimensional and S a two-dimensional volume
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For a two dimensional power-law potential which is

symmetric in both directions, U(x, y) =  + ,

Eq. (2.17) reads η = 2/t + 1 and the critical tempera-
ture is

(2.26)

Unlike in the 1D case, gη(1) remains finite for all posi-
tive values of t. Consequently, for a confined 2D sys-
tem, BEC can in principle occur, except for homoge-
neous systems where t  ∞.

2.4. Semiclassical Density Distribution

An effect of the inhomogeneous confining potential
is a spatial compression of the cloud during cooling and

crossing . The behavior of this spatial compression
can be and has been used as a signature for the occur-
rence of BEC (Section 3.2.1). In the following, we will
calculate the temperature dependence of the spatial
density profile near the critical point. We start with [38]

(2.27)

The temperature dependent occupation numbers f(ε)
and the wavefunctions ψε(r) for all states have to be
known. Furthermore, we must know µ(T), which is an
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important parameter for determining the occupation

number f(ε) for T > . Therefore, Eq. (2.27) is quite
difficult to evaluate analytically. There is, however, a
different way to do this. The number of particles occu-
pying a given phase space cell is

(2.28)

where f(ε) is

(2.29)

The total density of the normal fraction in position
space is found by integrating over momentum space

(2.30)

where we make use of the integral representation of the
Bose function. This formula holds for any trapping
potential. If we may now for simplicity assume a har-

monic oscillator, U(r) =  +  + ,

we can similarly calculate the momentum distribution
by integrating over position space

(2.31)

where atrap is the size of the ground state of the har-
monic trap. Of course, by integrating the distributions
(2.30) and (2.31) we recover the normalization (2.10):

. (2.32)

When evaluating (2.30) using a semiclassical
approach, we left out the ground-state contribution,
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Fig. 1. Condensed fraction and heat capacity at the phase transition for a homogeneous gas (dotted line) and for a harmonically
trapped gas (solid line).
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which is in fact negligible above the phase transition

. Below , the contribution of the ground-state to

the density (2.30) is given by N0|ψ0|2, where ψ0

Tc
0 Tc

0

describes the ground state of the trap. If we assume a

harmonic oscillator potential U(r) = ω2r2, we expect

a Gaussian distribution for the ground state density
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To obtain the evolution of n(r) while the system is
cooled down across the phase transition, it is necessary
to know the fugacity Z as a function of temperature. We
can either numerically solve the second equation of
(2.22) separately above and below the phase transition,
or we can approximate the fugacity by a series as

described below. Above  Eq. (2.5) can be written

The sum can be transformed into an integral in the con-
tinuum-of-states approximation:

(2.34)

where Dj = e–jβεdε. This series relates the num-

ber of particles with the fugacity, where the coefficients
Dj carry all information about the external potential.
The series can be inverted yielding values for the fugac-
ity Z. For the harmonic oscillator, we obtain the explicit
expression

(2.35)

We can now evaluate (2.33) at any temperature. For
simplicity, we consider the density at r = 0. As a func-
tion of temperature, the peak density n(0) exhibits a
sudden jump, proportional to N1/2, at the critical tem-
perature (Fig. 2). This behavior is frequently used as an
experimental indication for the occurrence of BEC [3].
Larger total particle numbers N make the identification
easier. For small numbers, the density jump decreases
and eventually may be washed out by fluctuations in the
thermal distribution.

Intuitively, one expects Bose condensation to set on
when the mean distance between the particles is
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approximately λdB . Indeed, the density distribution

(2.33) takes a value of nc = g3/2(1) at the critical
point irrespective of the nature of the confining poten-
tial. The main effects of inhomogeneous trapping is to
concentrate the density at a smaller region of space and
to facilitate the formation of BEC in this region. The

quantity n(0)  = g3/2(Z) is often called phase space
density of the gas.

2.5. Finite Number of Particles

The condensates experimentally produced in alkali
gases consisted of relatively small atom numbers
between 1000 to 107, so that the validity of the thermo-
dynamic approximation and the use of the density of
states approach has been questioned [39]. Also, the
decision whether to use the grand canonical, the
canonical or the microcanonical ensemble for calculat-
ing the thermodynamic quantities noticeably influences
the results. Herzog and Olshanii [40] have shown that
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Fig. 2. Peak density at the phase transition for a harmoni-
cally trapped ideal Bose gas of 106 rubidium atoms. The
trap secular frequency is set to ωtrap = 2π × 16 Hz.
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for small atom numbers on the order of 100 the canon-
ical and grand canonical statistics lead to predictions on
the condensed fraction that differ by up to 10%. On the
other hand, they give the same results if the particle
numbers are large. Which canonical statistics is more
appropriate is not a trivial question and depends on the
experimental setup and in particular on the time scale
of the measurements. If we look at the sample for short
times, the number of condensed atoms will be fixed,
and we can assume a canonical ensemble. For longer
times, however, the atom number may be an equilib-
rium parameter depending on the contact of the sample
with a reservoir, and the grand canonical statistics is
better suited.

Assuming grand canonical ensembles, we will now
discuss the impact of finite atom numbers on the prop-
erties of a Bose gas at the condensation threshold and,
in particular, on the transition temperature and the heat
capacity [39–43]. To illustrate this point, we numeri-
cally calculate the heat capacity of a Bose gas confined
in a three-dimensional isotropic harmonic trap. The
energy eigenvalues εm are:

(2.36)

For a three-dimensional trap, we must take the degen-
eracy γm for the levels into account,

(2.37)

We numerically integrate the expression for the number
of atoms

(2.38)

εm m"ω.=

γm
1
2
--- m 1+( ) m 2+( ).=

N γm f εm( ),
m 0=

∞

∑=

in order to extract the chemical potential µ(T) from the
occupation number (2.4). We start using a certain lim-
ited number of levels m and subsequently add more
until the result converges. Knowing µ(T), we can easily
estimate the other thermodynamical quantities. The
total energy of the system is

(2.39)

and the heat capacity is derived from its definition
(2.19) in analogy to the continuum-of-states formula
(2.20) [43],

(2.40)

where

(2.41)

Figure 3 shows the results of the numerical calculations
of the heat capacity for different values of N. The criti-

cal temperature  is defined at this discontinuity. If we
define the critical temperature Tc to coincide with the
maximum heat capacity (where ∂C/∂T = 0), we find

Tc/  = 0.813, 0.898, and 0.946 for N = 100, 103, and
104, respectively. The lowering of the critical tempera-
ture for decreasing numbers of particles is due to the
fact that smaller systems have larger available effective
volume. In the thermodynamic limit (N  ∞) the dis-
continuity appears very clearly. As N decreases, C(T)
gets smoother at the transition and the discontinuity
disappears. Strictly speaking, the finite system does not
undergo a phase transition. On the other hand, the devi-
ation of the behavior of a large finite number system
from the thermodynamic limit is reasonably small to
justify talking about phase transition.

Grossmann and Holthaus [39] derived analytic
expressions for grand canonical ensembles and har-

monic traps with  = (ωxωyωz)1/3 and  = (ωx + ωy +

ωz). For the condensed fraction and the critical temper-
ature they found:

(2.42)
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(2.43)

2.6. Atomic Interactions in Nonideal
Confined Bose Gas

Until now, we only considered non interacting ideal
gases. The thermodynamic behavior of such systems is
solely governed by statistics or, at low temperatures, by
quantum statistics. Real systems are always affected by
particle interactions. Often particle interactions are so
dominant that they blur the quantum effects. Interac-
tions cause quantum depletion of the condensate phase
even at zero temperature. In the case of superfluid 4He
only a small fraction, typically around 10%, is in the
ground state. However, far from being only a nuisance,
atomic interactions enrich the multitude of physical
phenomena. They give rise to nonlinear behavior of the
de Broglie matter-wave exploited in nonlinear atom
optics (Section 5.4), and the strength of the interactions
can even be tuned close to so-called Feshbach collision
resonances (Section 6.1).

The grand canonical many-body Hamiltonian of a
trapped Bose gas, interacting through the local s-wave
collision potential, in second quantization reads

(2.44)

where  denotes the bosonic field atomic annihila-
tion operator and satisfies the Heisenberg equation of
motion. The interaction strength g = 4π"2a/m only
depends on a single atomic parameter, the scattering
length a. A common approximation is the Bogolubov
prescription, where the field operators describing the
condensate and thermal phase can be decomposed into
a complex function ψ0(r) ≡ 〈 〉  called condensate
wavefunction which can be chosen as the order
parameter of the system and into a small perturbation
δ  ≡  – ψ0(r) describing the thermal excita-
tions. At zero temperature, we can neglect the thermal
excitations [44] and our system is completely described
by a single wavefunction ψ0(r, t) that follows the
Gross–Pitaevskii equation,

(2.45)

2.6.1. Semiclassical approximation. If we addi-
tionally assume "ω ! kBT, we can apply the semiclas-
sical WKB approximation, i.e., the atomic motion does
not have to be quantized and the trap has a continuous
energy spectrum. We can then replace coordinate and
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momentum operators by their expectation values and,
with the abbreviations +(r, p) ≡ p2/2m + Utrap(r) – µ +
2gn(r) and n(r) = n0(r) + nth(r), we get a set of two
semiclassical Bogolubov equations

(2.46)

where the phonon creation amplitude u(r, p) and the
phonon annihilation amplitude v (r, p) obey the nor-
malization condition u(r, p)2 – v (r, p)2 = 1. They relate
the particle distribution function F(r, p) and the quasi-
particle distribution function f(ε) = (eβε(r, p) – 1)–1 by

(2.47)

The spatial distribution of the thermal density is calcu-
lated from

(2.48)

and analogously for the momentum distribution. The
last equation represents a generalization of Eq. (2.30)
for interacting particles at all excitation energies. The
Bogolubov equations (2.46) yield a simple expression
for the excitation spectrum

(2.49)

They can be solved numerically [45] or approximated
analytically. All thermodynamic quantities can be
derived from the distribution functions and the spec-
trum. For example the entropy reads S =

kBh−3  – ln(1 – e–βε))d3rd3p, the heat capacity

is C = T(∂S/∂T)N , and the total energy follows from C =
(∂E/∂T)N . For homogeneous systems, where the wave-
functions are plane waves, the energy spectrum takes
the well-known local-density form of the Bogolubov
dispersion relation,

(2.50)

which has been used to calculate particle-like excita-
tions, p2/2m @ gn(r), and phonon-like excitations,
p2/2m ! gn(r) (Sections 4.3.1 and 5.4.2).

Several interesting results can be obtained by
restricting the analysis to energies that are much larger
than the chemical potential, ε(r, p) @ µ. From the
Bogolubov equations, we then derive a particularly
simple Hartree-Fock type spectrum

(2.51)

As a rough approximation, above Tc , we can neglect
the influence of the interactions on the density distribu-
tion, plug the semiclassical expression (2.30) into the

+ r p,( )u r p,( ) gn0 r p,( )v r p,( )–  = ε r p,( )u r p,( ),

+ r p,( )v r p,( ) gn0 r p,( )u r p,( )–

=  ε r p,( )v r p,( ),–

F r p,( ) u r p,( ) 2 v r p,( ) 2+( ) f ε( ).=

nth r( ) h 3– F r p,( ) p3d∫=

ε r p,( ) + r p,( )
2

g2n0
2 r( )– .=

βε f ε( )(∫

ε r p,( )
p2

2m
------- p2

2m
------- 2gn0 r( )+ 

  ,=

ε r p,( ) p2

2m
------- U r( ) 2gn r( ).+ +=



672

LASER PHYSICS      Vol. 11      No. 6      2001

COURTEILLE et al.

Hamiltonian and recalculate the thermodynamic poten-
tials with the effective potential Ueff(r) = U(r) +

g g3/2[eβ(µ – U(r))] [35]. In the case of a harmonic
potential, the condensate fraction is

(2.52)

where the  is the critical temperature in the ideal gas
limit (Table 1). The critical temperature modified by
interactions is estimated from (2.52) by setting N0 = 0.
For positive scattering lengths, the phase transition
occurs at lower temperatures. This can be understood
intuitively, because the repulsive particle interaction
associated with positive scattering lengths counteracts
the density compression required for initiating the con-
densation process.

Giorgini et al. [45] numerically integrated the semi-
classical Bogolubov equations and derived the density
distributions and the main thermodynamic quantities
for atoms trapped in harmonic potentials. Among other
results, they found that repulsive interactions strongly
enhance the thermal depletion of the condensate. They
also confirmed the decrease of the transition tempera-
ture and noticed a smoothing of the temperature depen-
dence of the heat capacity at the phase transition due to
collisions. For ideal gases, we set g  0 in the Bogol-
ubov equations (2.46) and recover the results of the pre-
vious sections. The excitation spectrum is simply,

(2.53)

2.6.2. Attractive interactions. The atomic interac-
tion potential decides on the value of the scattering
length a: A repulsive potential corresponds to a positive
a. For a purely attractive potential that supports no
bound state a is negative, and for an attractive potential
that supports bound states a can be either positive or
negative depending on the proximity of the last bound
state to the dissociation limit.

A negative scattering length may, at first, seem
desirable, because it rises the BEC threshold tempera-
ture according to Eq. (2.52). However, attractive
interactions raise other problems. The interaction
energy of a Bose–Einstein condensate is given by
4π"2an/m and, if the scattering length is negative,
decreases with increasing density n. The condensate
attempts to lower its interaction energy by increasing
its density until it collapses [46] by inelastic two-body
spin exchange processes or three-body recombination
processes. This holds for homogeneous condensates.
However, when confined in a trap, the zero-point
energy exerts a kinetic pressure which balances the
destabilizing influence of the interactions, so that small
condensates are expected to be stable. Calculations for
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spherical traps predict [47] Nmin ≈ 0.575atrap/ |a |, where

atrap = .

2.7. Classification of Phase Transitions

Ehrenfest classification. Because of the huge vari-
ety of phase transition phenomena, a general classifica-
tion is not easy. The first attempt was undertaken in
1933 by Ehrenfest. He proposed the following classifi-
cation scheme founded on the thermodynamic proper-
ties of the phases. A phase transition is of nth order if the
nth derivative with temperature of at least one of the
state variables, e.g., chemical potential µ(T), internal
energy E(T) or entropy S(T), is discontinuous at the
transition point whereas all lower derivatives are con-
tinuous [48]. As an example: the liquid–gas phase tran-
sition is of first order, because ∂µ/∂T is discontinuous.

In order to characterize the Bose–Einstein phase
transition, we investigated the temperature dependence
of the heat capacity in Section 2.2 (Table 1 and Fig. 1).
We saw that, depending on the type of the confining
potential, the occurrence of a thermodynamic phase
transition can be quite remarkable through a disconti-
nuity of the heat capacity C(T) = ∂E/∂T at the critical

temperature . For a generic power law potential, the
discontinuity depends on the confinement power η. If
the confinement power is η ≤ 2, for example for a
homogeneous system (3D-box), the discontinuity of
C(T) disappears, but ∂C/∂T remains discontinuous.
However, in any case the chemical potential exhibits an

abrupt change of its temperature dependence at , i.e.,
∂µ/∂T is discontinuous. This aspect is very similar to
liquid–gas phase transitions. Therefore, adopting
Ehrenfest’s classification scheme, Bose–Einstein con-
densation of an ideal gas takes place as a first order
phase transition regardless of the shape of the confin-
ing potential.

The Bose–Einstein condensation of a homogeneous
system is often called a condensation in momentum
space, because the phases do not separate [49]. It is
important to note, that the phase separation is not an
essential feature for BEC and does even occur in a
homogeneous system under the influence of gravity
[32], because the dense condensate has a negative
buoyancy inside the normal fraction. In harmonically
trapped gases, the condensed and thermal fractions spa-
tially separate to a large extent, since the condensate
nucleates at the center of the thermal cloud, where the
density is highest. The process must then be considered
a condensation in phase space.

We have seen in the Sections 2.4 and 2.6, that
atomic interactions and finite ensemble sizes smooth
out the discontinuities. As a result, in Ehrenfest’s clas-
sification scheme first order transitions become second
or higher order transitions [32]. The different classifi-
cation suggests a fundamental change in the quality of
the transition due to interactions. We should, however,

"/mωtrap

Tc
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Tc
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keep in mind that the reason for the occurrence of the
BEC phase transition is the symmetry of the bosonic
single-particle wavefunction, and that forces between
the particles rather tend to blur the quantum statistical
nature of the process. In the case of the strongly inter-
acting liquid 4He, the heat capacity changes smoothly
and exhibits a λ-shaped peak at the critical point.

Ginzburg–Landau classification. Landau empha-
sized the role of symmetry in thermodynamics by intro-
ducing the notion of the order parameter [50], which
he defined as a very general macroscopic measure for
the amount of symmetry in a system. Symmetry con-
siderations play an important role at phase transitions,
and many types of phase transitions change the symme-
try of the system. Typically the phase with the higher
temperature is more symmetric. The order parameter is
zero for this phase and nonzero for the less symmetric
phase. An order parameter can also be defined, if the
symmetry apparently does not change as it is the case
for the phase transition from liquid to gas: Both phases
are isotropic. Order parameters may be very different in
nature, depending on the specific system and type of
force driving the phase transition, e.g., they may be
c-numbers, vectors or even many-body quantum fields.
In the case of Bose condensation, the condensate den-
sity is often taken as the order parameter. When cross-
ing the phase transition from high to low temperatures,
the system can spontaneously adopt a symmetry that its
Hamiltonian does not have, i.e., the symmetry is bro-
ken, and the order parameter takes a value different
from zero. For example, the transition from liquid to
solid breaks the translational symmetry.

Landau labeled a transition first order, if there is a
discontinuous change in the order parameter and con-
tinuous transition or critical phenomenon, if the order
parameter goes smoothly to zero at Tc . Applying the
Landau criterion to Bose gases, we find that BEC is a
second-order phase transition, because the temperature
dependence of the order parameter is continuous at the
critical point regardless of whether the gas interacts or
not (Fig. 1). The Landau classification seems therefore
more appropriate for the Bose–Einstein phase transi-
tion.

CHAPTER 3.
MAKING AND PROBING

BOSE–EINSTEIN CONDENSATES

The first hint, that Bose–Einstein condensation was
more than just a theoretical fantasy came from London
[49] who connected the newly found phenomenon of
superfluidity in 4He to BEC. However, the interpreta-
tion of the λ point in terms of BEC was not obvious
because strong particle interaction blur the quantumsta-
tistics, and the thermodynamic quantities exhibit diver-
gences at Tc rather than discontinuities as expected
from ideal gas BECs. The occurrence of BEC is
inferred from its influence on the bulk properties of the
system. These uncertainties motivated intense search in

other systems. In 1954, Schafroth pointed out that elec-
tron pairs can be viewed as composite Bosons and
might Bose-condense at low temperatures [51]. In
1957, Bardeen, Cooper, and Schrieffer developed the
microscopic theory of superconductivity [52], a phe-
nomenon that has been related to Bose condensation of
electron- or Cooper-pairs by other researchers includ-
ing Blutt, Schaffrot, Fröhlich, and Bogolubov.

Motivated by the need to test the concept of com-
posite-particle or quasi-particle condensation in weakly
interacting systems, in 1962, Blatt et al. proposed the
investigation of BEC in exciton gases [53]. Excitons are
bound electron-hole pairs that can form a weakly inter-
acting gas in certain nonmetallic crystals. They are
interesting because their small mass permits BEC at
high temperatures, their density can be controlled over
a wide range by modifying the optical excitation level,
and they are destructible. Excitons were discovered in
1968 and the first evidence of Bose–Einstein condensa-
tion of biexciton-molecules in CuCl crystal dates from
1979 [54]. One year later, the influence of Bose–Ein-
stein statistics on orthoexcitons (S = 1) was observed by
Hulin et al. in CuO2, and finally the condensation of
paraexcitons (S = 0) in 2 µm thick stressed CuO2 films
by Lin et al. [55]. They achieved BEC at densities
above 1019 cm–3 and transition temperatures close to
Tc = 50 K.

Hecht [56] suggested in 1959, followed by Stwalley
and Nosanow [57] in 1976, that spin polarized atomic
hydrogen would be a suitable candidate for BEC. In
1978 Greytak and Kleppner at the MIT started inten-
sive efforts to form BECs in dilute hydrogen gases. In
the nineties, advances in cooling atoms by laser light
led to really low temperatures, and the invention of
traps for neutral atoms allowed their confinement and
the compression of their density. This initiated efforts
to try to realize BEC in alkalis, which have an elec-
tronic level scheme that lends itself to optical cooling.
Later, it turned out that the phase space density in opti-
cal traps is limited by optical rescattering effects. As a
solution to this problem people started to trap the atoms
by their magnetic dipole moment and to replace optical
cooling by evaporative cooling. This was the final step
towards BEC in alkali gases. The hydrogen experiment,
that initially stimulated the alkali experiments, now
taking advantage from their success could be led to
BEC, as well.

Today, hybrid optical plus evaporative cooling in
alkali-metals increased the phase space density by a
factor of 1015. BEC has been achieved in rubidium, lith-
ium, sodium and also in hydrogen. In the present chap-
ter, we will outline the experimental progress that led to
BEC in the alkalis by discussing the various techniques
employed.
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3.1. Techniques for Cooling and Trapping

Light interacts in two different ways with the
mechanical degrees of freedom of atoms [58]. One way
is through the force

(3.1)

where d denotes the atomic dipole moment and E the
electric field of the light. The dipole force arises from
the interaction of the light with the dipole, which the
light induces in the atom [59]. It can be understood as
stimulated scattering of photons between the modes of
the light field by the atoms. The force acts in the direc-
tion of the intensity gradient. It is a conservative spa-
tially varying force and therefore interesting for realiz-
ing trapping potentials for atoms [60]. A light field with
intensity I, detuned from a resonance ω0 by ∆ = ω – ω0,
gives rise to the dipole force

(3.2)

where the absorption profile is described by the optical
cross section σ,

(3.3)

and σ0 = 3λ2/2π is the resonant optical cross section on
a transition whose Clebsch–Gordon factor is equal to
one. Furthermore, the Rabi frequency is introduced by

Ω ≡ d · E/" = . The force (3.2) can be
expressed as the gradient of the conservative trapping
potential

(3.4)

The second force is called radiation pressure and
comes from spontaneous scattering of photons at an
atomic resonance. It was first observed as early as 1933
by Frisch [61]. The absorption of a photon from the
light field (wavevector k) imparts a recoil momentum
p = "k to the atom. The subsequent spontaneous emis-
sion is isotropic in the time-average, so that in the aver-
age over many emission processes no momentum is
transferred to the atom. The radiation pressure is dissi-
pative and has been used in optical cooling schemes
[62, 63].

The radiation pressure is velocity dependent. The
velocity dependence comes from the Doppler effect,
which links the external degrees of freedom of the atom
(its motion) to the internal ones (detuning between light
and atomic resonance frequency): The frequency ω of
a light field is increased or decreased in the inertial sys-
tem of the atom, i.e., relative to the atomic resonance
frequency, depending on whether the atom moves
towards or away from the light propagation direction.
In a red-detuned light field photons are only absorbed
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by counterpropagating atoms, while copropagating
atoms are out of resonance. One can therefore use the
radiation pressure to manipulate the velocity of the
atoms and if need be decelerate them. Often the reduc-
tion in kinetic energy is accompanied by a reduction in
kinetic energy spread. Those cases are called optical
cooling. Radiation pressure has been used to decelerate
atomic beams in Zeeman slowers [64] and chirped-fre-
quency slowers [65].

The radiation pressure force of a light field on a two-
level atom (velocity v, linewidth Γ) averaged over many
absorption-spontaneous emission cycles, is [66]

(3.5)

The cooling force is proportional to the laser intensity, as
long as the transition is not saturated, I/Is = 2Ω2/Γ 2 < 1.
The smallest temperature that two-level atoms can
attain by Doppler cooling is limited by diffusion of the
momentum in phase space due to the stochastic process
of spontaneous emission. Cooling and diffusion heat-
ing are leveled when the atom has the kinetic energy
p2/2m = "Γ/2.

3.1.1. Magneto-optical traps. A frequently used
optical cooling scheme for low temperatures consists of
irradiating the atoms with three orthogonal pairs of
counterpropagating red-detuned laser beams. Radia-
tion pressure slows down the atoms without confining
them, and the atoms move like in a viscous medium, the
so called optical molasses [67]. Surprisingly, the tem-
peratures measured in optical molasses were well
below the Doppler limit. The responsible cooling
mechanisms have been identified to be based on optical
pumping between the Zeeman sublevels induced by
polarization gradients [68, 69]. These polarization gra-
dients are also responsible for the low temperatures
found in Magneto-Optical Traps (MOT). The MOT
was invented by Dalibard and first realized by Raab
et al. [70] and is presently the most commonly used
trap for atoms. It consists of a magnetic field gradient
produced by a quadrupole field and three pairs of circu-
larly polarized, counterpropagating optical beams,
detuned red from an atomic transition and intercepting
at right angles in the position of the magnetic field zero.
The MOT exploits the position-dependent Zeeman
shifts of the electronic levels when the atom moves in
the radially increasing magnetic field. The use of circu-
larly polarized, slightly red-detuned light, ∆ ≈ Γ, results
in a spatially dependent transition probability whose
net effect aims at producing a restoring force that
pushes the atoms towards the origin. The force exerted
by one of the laser beams (wavevector k = k ) acts pri-

marily on atoms with velocity v = v ,

(3.6)
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êz

êz
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Analogous expressions hold for all other beams. For
small displacements and velocities the total force can
be linearized,

(3.7)

where α and κ denote the friction and the spring con-
stant respectively, and describe a damped motion inside
a harmonic potential,

(3.8)

The dissipative character of the MOT makes it a
very powerful and versatile tool: At the same time, the
MOT traps up to 109 atoms from the environment, cools
them down to very low temperatures and then confines
them in a potential at densities approaching 1010 cm–3.
However, at such high density the atomic cloud gets so
optically thick, that photons are scattered several times
before they find their way out. This phenomenon is
termed radiation trapping. The atomic repulsion
induced by the photons at each absorption and emission
blows up the cloud size [71]. To overcome this radia-
tion trapping, Ketterle et al. [72] proposed to keep the
colder atoms that are close to the origin of the trap in a
dark electronic state in order to prevent them from scat-
tering light. His scheme, presently known as dark MOT
or dark Spontaneous Force Optical Trap (dark SPOT),
takes advantage of the large hyperfine splitting of the
2S1/2 ground state, which allows to selectively excite
and pump both hyperfine substates.

Typically, dark MOTs capture up to 5 × 109 atoms at
densities approaching n = 1011 cm–3 and temperatures
below 100 µK. The phase space density for such clouds

is ρ = n  < 10–6, which is still more than six orders
of magnitudes away from BEC. Since it seems impos-
sible to reach BEC in MOTs, alternative trapping
schemes have been developed, the most promising of
which are dipole force traps using laser light and mag-
netic traps operating without light beams at all.

3.1.2. Far-off resonance dipole traps. For large
detunings, the potential depth (or light-shift) estimated
from Eq. (3.4) reads:

(3.9)

while the spontaneous light scattering rate γs is propor-
tional to I/∆2. Heating of the atoms due to spontaneous
scattering of photons can therefore be avoided by using
intense, far-detuned laser beams. Such dipole force
trapping potentials are called Far-off Resonance Traps
(FORT) and can be engineered with various geome-
tries. For example, one-, two- or three-dimensional
configurations of red-detuned standing light waves give
rise to arrays of potential valleys in the intensity antinodes
called optical lattices [73, 74]. The simplest optical
dipole trap (and the first that has been realized [60])
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consists of a tightly focused red-detuned laser beam,
that confines the atoms at its waist. Atoms trapped in a
crossed dipole beam trap have even been evaporatively
cooled [75]. Alternatively, one can use blue-detuned
FORTs, where the atoms are confined in local minima
of the intensity profile and suffer less from spontaneous
light scattering [76]. Finally, dipole beams can be used
in conjunction with other trapping techniques (a blue-
detuned FORT was used to repel atoms from the center of
a magnetic quadrupole trap [4]) (Section 3.2.1), to manip-
ulate Bose–Einstein condensates [77] (Section 4.3.1) and
even to trap them [78] (Section 4.2.2).

The optical approach offers the advantage of high
spatial definition and temporal control, e.g., the trap
depth and location can easily be manipulated and mod-
ulated. The trap can be turned on and off very fast com-
pared to magnetic traps and offers the advantage of
being insensitive to magnetic fields, i.e., all magnetic
substates can be trapped. Furthermore, optical subre-
coil cooling schemes that do not work for magnetically
trapped atoms, may be implemented in optical traps.
Velocity Selective Coherent Population Trapping
(VSCPT) led to extremely low temperatures in the
nanokelvin regime [79] and Raman cooling led to very
high phase-space densities [80]. Several groups attempt
to attain BEC using all-optical methods, and it seems pos-
sible to cross the phase transition in the near future [81].

3.1.3. Magnetic traps. Magnetic traps hold the
atoms by their magnetic dipole moment m = µBgFF,
where µB denotes the Bohr magneton and gF is the
Landé g-factor for the total atomic spin F = J + I =
(L + S) + I. The symbol I denotes the nuclear spin, S is
the electron spin, and L is the electron angular momen-
tum. The Landé factor can be calculated from

(3.10)

If the spin adiabatically follows the magnetic field, the
force that the magnetic field gradient exerts on an atom
is

(3.11)

Thus, depending on the atom’s magnetic sublevel mF

(positive or negative), it is attracted towards or repulsed
from a magnetic field extremum. Unfortunately, static
magnetic field maxima are not possible, so that only
low-field seekers can be trapped in magnetic field min-
ima. These have the disadvantage of not being the ener-
getically lowest state. The spontaneous decay rate out
of those metastable Zeeman states is only ~10–10 s–1, but
spin-changing collisions can induce decay and trap
losses. Even in the lowest atomic state the trapped
alkali gases are metastable: In three-body recombina-
tion processes two atoms can form an energetically
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more favorable dimer if a third atom is nearby to take
away the excess energy. Since the event rate for three-
body collisions scales with the third power of the den-
sity, this process becomes dominant at high densities
[82], e.g., for Bose–Einstein condensates.

Dynamic traps based on time-dependent magnetic
fields have been proposed for both low- and strong-
field seekers by Lovelace et al. [83]. The first demon-
stration of a static magnetic trap for neutral atoms [84]
used an anti-Helmholtz coil configuration to produce
an axially symmetric quadrupole field. The magnetic
field geometry of a spherical quadrupole trap has a lin-
ear spatial dependence and provides the tightest con-
finement for atoms.

The assumption that the spin adiabatically follows
the magnetic field, unfortunately does not hold in all
cases. Especially, near zero magnetic field the Larmor
frequency gFmFµBB/" may get smaller than the rate of
change of magnetic field amplitude experienced by the
atom through its motion with velocity v, i.e., v∂rB/B.
At this location, missing a quantization axis, the atoms
are free to reorient themselves arbitrarily and undergo
so called Majorana spin flip transitions to untrapped
magnetic sublevels. This is exactly the case for a qua-
drupole trap. In this trap, atoms are lost due to Majo-
rana spin flips as they pass near the trap center due to
the sudden change of the magnetic field. The colder the
atoms are, the more time they spend near the center
“hole,” and the situation is even worse.

The Time-Orbiting-Potential (TOP) trap was
designed to suppress the Majorana loss by adding a
rotating transverse bias field Bbias to the quadrupole trap
(gradient ∂rBquad) [85]. The bias field shifts the “hole”
away from the region where atoms are trapped to a dis-
tance rd = Bbias/∂rBquad from the center. The hole rotates
in a so called death circle around the harmonic trap, fast
enough for the atoms to only respond to the time-aver-
aged potential. An alternative approach are Ioffe-Prit-
chard (IP) type magnetic field configurations. In the
magnetic field minimum the field amplitude does not
vanish, so that Majorana spin-flip transitions do not
occur. The original IP trap consists of a combination
between a quadrupole waveguide and a magnetic bottle
[86, 87]. Variations of IP traps include the cloverleaf
trap [88], the baseball trap [7, 89], the Ioffe bar trap
[90], and the Quadrupole Ioffe Configuration (QUIC)
trap [91].

Laser cooling in magnetic traps has the advantage
over evaporative cooling (next section), that the heat
dissipation does not rely on the irreversible removal of
hot atoms and does not require high densities and colli-
sion rates. On the other hand, Doppler-cooling in mag-
netic traps is possible [92], but it meets its natural limit
at temperatures in the millikelvin range. Raman-cool-
ing and VSCPT are not compatible with magnetic traps.
However, other cooling schemes are possible or will
probably be developed in the future. One example is the
idea of gravitational Sisyphus cooling tested by New-
bury et al. [93].

3.1.4. Evaporative cooling. As we have seen ear-
lier, laser cooling becomes ineffective when the density
of the gas is high. We need another dissipative mecha-
nism to cool atoms confined in magnetic traps. A new
method called evaporative cooling has been proposed
by Hess [94] for spin-polarized hydrogen (H↑) and has
been observed by Masuhara et al. [95]. It was later utilized
for the alkali-metals [75, 85, 96]. A detailed review has
been published by Ketterle and van Druten [97].

Evaporation always occurs when energetic particles
leave a system with finite binding energy, taking away
more than their share in mean energy per particle. We
consider here the case of a magnetic trapping potential
with a finite extension, i.e., the potential has an edge or
a spout through which hot atoms with enough kinetic
energy to reach that region can leave the trap. In the
ideal case, this will lead to a complete truncation of the
hot tail of the equilibrium Maxwell–Boltzmann veloc-
ity distribution. If the remaining system finds back to
thermal equilibrium, it will do so at a lower tempera-
ture. The redistribution of kinetic energy among the
atoms, that ultimately leads to rethermalization, hap-
pens through elastic collisions. It takes about three col-
lisions per atom to rethermalize a cloud [89, 98]. The
rate for elastic collisions between trapped atoms is

(3.12)

where n0 is the peak density, σel is the elastic scattering
collision cross section, and  is the average relative
velocity between two atoms [97]. Obviously, the evap-
oration process slows down when the cloud gets colder,
unless the potential edge is lowered so that the hottest
atoms of the colder cloud are evaporated.

By continuously lowering the potential edge while
the atomic cloud is rethermalizing (this procedure is
called forced evaporation), very low temperatures in
the nanokelvin regime can be reached and the phase
space density can be increased by six orders of magni-
tude up to the threshold of Bose–Einstein condensa-
tion. This is of course only possible by sacrificing many
hot atoms. Even in a well optimized evaporation ramp,
only 1% may reach the condensate stage after about
500 collisions per atom.

Two aspects should be pointed out concerning the
optimization of the evaporation path, i.e., the down-
ramping of the truncation edge. The first aspect is that
inelastic collisions with atoms from the background
vapor limit the trap lifetime. Therefore, the evaporation
needs to be fast, which requires high elastic collision
rates or a good vacuum. There is a trade-off between an
efficiently slow evaporative cooling on one hand and
avoiding the accumulation of trap losses on the other
hand. The second aspect is that the dimensionality of
the evaporation edge determines the efficiency of evap-
orative cooling. The first demonstration of evaporation
in H↑  ejected hot atoms over a saddle point. The saddle
point constitutes a small region of space away from the
trap origin, and only atoms that have enough kinetic

γcoll n0σelv 2 ρ3N2/3,∼=

v
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energy in one direction Ez > Uedge can leave the trap.
The evaporation is then called 1-dimensional (1D). It is
true, that ergodic mixing due to anharmonicities in the
trapping potential will sooner or later drive all the
atoms through this region, but this effect becomes less
pronounced when the cloud cools down, since the
atoms settle down in the harmonic (and therefore sepa-
rable) region at the bottom of the trapping potential.
This fact has inhibited efficient evaporation in H↑
below 120 µK [99].

A second evaporation technique has been demon-
strated in TOP traps [85]. As explained in Section 3.1.3,
it is a feature of TOP traps to be surrounded by a death-
circle that ejects the atoms passing through. This death-
circle can act as a 2D evaporation surface if its radius rd

is large enough. Under the influence of gravity the
dimensionality is even reduced to 1D [97]. For small
atomic clouds, typically less than 108 atoms, a TOP trap
only needs a moderate death circle radius. But a small
death circle is an obstacle for the creation of Bose con-
densates with large numbers of atoms. For efficient
evaporation, it is necessary for the death circle radius rd

to be greater than 3 to 4 times the rms radius r0 of the
trapped atom cloud. On the other hand, it is also neces-
sary that the elastic collision rate be very large. This is
usually achieved in part with an adiabatic compression
of the magnetic trapping potential, in which the trap

frequency increases according to ωr ~ ∂rBquad/ .
Thus, we wish to increase ∂rBquad and decrease Bbias .

However, this also shrinks the ratio rd/r0 ~ / .
For large atom numbers the initial radius r0 tends to be
large and the ratio rd/r0 small unless the magnetic field
strengths are very large. Thus, only modest compres-
sion can be achieved before the death circle loss sets in,
and the elastic collision rate must already be large
enough for efficient evaporation at this point. This
means that for large clouds it is not possible to depend
on a large compression of the density, and that the ini-
tial densities in the trap must not be too far from those
required for efficient evaporation. This is achieved by
efficient optical cooling and compression, and efficient
transfer of the atoms into the TOP [6].

The most successful evaporation technique imple-
mented so far is based on radiative coupling of trapped
and untrapped states in an energy-selective way and is
termed radiofrequency (rf) evaporation. It originates
from an idea proposed by Pritchard and coworkers
[100], who already had some experience with rf-spec-
troscopy on magnetically trapped neutral atoms [101].
The spatially dependent Zeeman-splitting is an intrin-
sic feature of magnetic traps. Irradiation of a radiofre-
quency wave with a given frequency couples the
trapped and untrapped Zeeman-substates at a well-
defined distance from the trap origin. This gives rise to
a 3D evaporation surface, where crossing atoms can
undergo Landau–Zener transitions and be expelled
from the trap. The technical advantages of this scheme

Bbias
1/2

Bbias
3/4 Bquad

1/2

are substantial: The magnetic trapping potential does
not need to be manipulated, and the potential edge can
easily be controlled by the radiofrequency. If the evap-
oration is forced by continuously lowering the radiofre-
quency and if the evaporation path is suitably chosen,
the density will increase and therefore the collision
rate. The rethermalization will speed up and initiate
run-away evaporation. Rf-evaporation was first demon-
strated by Ketterle and coworkers [96].

Another cooling mechanism based on collisions is
sympathetic cooling. The technique originally used in
ion traps was later applied to neutral atoms confined in
magnetic traps. The idea consists of bringing the gas
into thermal contact with a cold buffer gas. In some
cases, the buffer gas can be optically or evaporatively
cooled. Buffer gas loading of conservative traps, e.g.,
magnetic traps [102], is an alternative to the transfer
from MOTs. Sympathetic cooling has been used in
magnetic traps to create double condensates [7] (Sec-
tion 4.2.1) and to cool fermions down to the regime of
quantum degeneracy [103] (Section 3.2.3).

3.2. Realization of Bose–Einstein Condensation

In early 1995, several research groups were very
close to the long pursued goal. Several improvements
of the optical trap led to large atom numbers transferred
to the quadrupole magnetic trap, evaporative cooling
had been observed. The first observation of Bose–Ein-
stein condensation in a dilute gas was made at JILA [3]
in rubidium. It was followed by Rice [5] in lithium and
MIT in sodium [4], and later by Han et al. [6] and Hau
et al. [104], and has now been confirmed by more than
twenty groups worldwide. This section will briefly
relate the first three experiments. A remarkable
achievement is the condensation of atomic hydrogen
[99]. Other candidates for BEC are thoroughly investi-
gated, like cesium [81, 105, 106], potassium [107],
helium [108] and neon [109].

3.2.1. BEC in alkalis. The JILA experiment led by
Cornell and Wieman worked with a rubidium vapour
cell dark MOT. Operating at 10–11 torr it took 300 s to
load 107 atoms. In order to optimize the loading effi-
ciency into a magnetic trap, the MOT gradient and laser
frequency detuning were adjusted and a short pulse of
circularly polarized laser light pumped the atoms in
presence of a weak homogeneous magnetic field defin-
ing the quantization axis into the fully stretched F = 2,
mF = 2 Zeeman state. Then, all laser light was switched
off and the quadrupole TOP trap quickly switched on.
The effective time-averaged potential µBB was pan-
cake-shaped with secular frequencies close to ωz =

ωr = 2π × 120 Hz. The TOP trap rotating frequency
ωTOP = 2π × 7.5 kHz, was chosen to satisfy "ωz !
"ωTOP ! µBB. The potential was adiabatically com-
pressed by ramping up the quadrupole field gradient
and then reducing the rotating bias field amplitude. This
enhanced the collision rate to about three per second,

8
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which was (in view of the 70 s magnetic trap lifetime)
enough to initiate run-away evaporative cooling. At this
stage, the cloud consisted of 4 × 106 atoms at 90 µK tem-
perature and 2 × 1010 cm–3 density. Death circle induced
Majorana spin flips and rf-induced Landau-Zener tran-
sitions both acted as an edge to the potential and con-
tributed to evaporative cooling. The rf-scalpel was
ramped down thus skimming off the hot atoms from the
continuously rethermalizing cloud. The phase transi-
tion was crossed with the rf-frequency at 3.6 MHz.
With a 5 G rotating bias field amplitude, this rf-fre-
quency made the trapping potential about 800 kHz
deep. Finally, after an equilibration time of two sec-
onds, the released and ballistically expanded conden-
sate was probed after 40 ms time-of-flight with a circu-
larly polarized laser beam tuned to a cycling transition
(Section 3.3.1). Figure 4 shows typical absorption pic-
tures taken with that method. The signatures of BEC are
(1) a bimodal density distribution with a sharp increase

in peak density in the center of the cloud, (2) a critical
dependence on the final rf-ramp frequency, and (3) an
anisotropic shape of the central condensed feature. As dis-
cussed later (Section 4.1), only the BEC wavepacket
remembers the shape of the trap that confined it before
being released.

Of course, the condensed atom number and quality
of the results in general have been largely improved in
subsequent experiments at JILA and in other groups.
E.g., the loading of the optical trap from the back-
ground vapour has been replaced by a Zeeman-slower,
a double MOT or an axicon trap configuration which
permitted faster loading rates at a lower vapour pres-
sure. Other beam and magnetic trap configurations
have been used, and other imaging systems have been
developed. Today, atom numbers higher than 106 can
routinely be condensed in TOP traps. However, the
essential features of the method described above has
been the same for all alkali BEC experiments.

The Rice group led by Hulet opted for lithium [5].
Lithium has a slightly negative scattering length a =
−27.3aB , for which only small condensates are
expected to be stable (Section 2.6.2). The Rice group
used a magnetic trap configuration made of permanent
magnets in an arrangement that produces a harmonic
potential with a magnetic field minimum offset by
823 G. This has the advantage of a simple experimental
setup, but at the price of flexibility. The magnetic trap
is directly loaded from a Zeeman-slower. A 10–12 torr
background pressure corresponding to 10 min magnetic
trap lifetime allows 1000 collisions per lifetime with an
elastic scattering cross section of σ = 5 × 10–13 cm2.
After typically 5 min evaporation, a sample of 105 atoms
reaches temperatures close to 300 nK. Because the
magnetic field cannot be switched off, in situ imaging
of the dense condensed cloud is necessary. Near-reso-
nant imaging of the optically thick cloud introduces
lensing effects, which make the interpretation of the
recorded images difficult [110] and first led to errone-
ous claims about the numbers of condensed atoms [5].
Later, the use of phase-contrast imaging which exploits
the birefringence of the atoms in the strong magnetic
field offset (Section 3.3.2) resolved this problem and
resulted in the observation of limited atom numbers of
about 1400 atoms. Subsequent experiments monitored
the dynamics of collective collapse of lithium BECs as
soon as a critical atomnumber is surpassed [111].

The MIT group led by Ketterle used sodium. Instead
of using a vapour cell, they loaded their MOT from a
Zeeman slower. Apart from this, their approach was
similar to the JILA experiment, except for the method
used for suppressing the Majorana spin flips. In their
first experiment they used a far-off resonant optical
beam, λ = 514 nm and I = 2 × 105 W/cm2, causing
7 MHz light shift to repel the atoms from the center of
their quadrupole trap and thus plug its hole [4]. They
condensed N = 5 × 105 atoms at T = 2 µK and densities
around n = 4 × 1014 cm–3. In a modified setup, the MIT
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Fig. 4. (a) Time-of-flight absorption pictures above,
(b) slightly below, and (c) well below the phase transition
(figures taken from [6]).
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group replaced the quadrupole trap by a cloverleaf trap,
which has a Ioffe-Pritchard type potential [88] and is
free of the spin-flip problem (Section 3.1.3). In this
trap, Mewes et al. produced condensates of N = 5 ×
106 atoms. In contrast to the pancake-shaped fixed
aspect ratio of TOP traps, cloverleaf traps are cigar-
shaped and have a large tunable aspect ratio, which
proved useful for a range of subsequent experiments.

3.2.2. BEC in hydrogen. Hydrogen is a very inter-
esting element to study BEC, because its small scatter-
ing length, as ≈ 1.23aB , makes it an almost ideal gas.
This has the advantage of small three-body losses
allowing dense condensates. The small mass results in
a high critical temperature. Its simple level structure
allows precise calculations of the interaction potentials
based on first principles, which may, in this way, be
tested by experiments. The narrow 1.3 Hz wide 1S–2S
(Lyman-α) transition at 121.56 nm might be a good
candidate for frequency standards in atomic fountains
[112]. Narrow lasers with 0.6 Hz emission bandwidth,
that would be able to exploit this narrow reference line
have already been constructed in other wavelength
regions [113].

In 1978 Greytak and Kleppner started intensive
efforts to form BECs in dilute hydrogen gases. Twenty
years later they finally reached their goal [99]. The
sequences of this difficult experiment recapitulate the
advances in the historical development towards higher
densities and lower temperatures. In this experiment,
large numbers of hydrogen molecules were dissociated
in a cryogenic discharge, spinpolarized and trapped in
a magnetic Ioffe-Pritchard potential and confined in a
cell with 120 mK cold liquid 4He coated walls. The
atoms thermalized by collisions with the walls until
they settled down in the 500 mK deep trap and ther-
mally disconnected from the wall. Because cryogenic
cooling is limited to 40 mK, a new technique had to be
invented, namely evaporative cooling [94] over a sad-
dle point of the potential. The evaporation could be
forced by lowering the trapping potential down to 1.1
mK. However, the evaporation surface is one-dimen-
sional (Section 3.1.4) and becomes increasingly ineffi-
cient at temperatures below 120 µK, because rether-
malizing collisions are rare due to the small scattering
length. The problem was solved by applying the tech-
nique of radiofrequency evaporation, which had been
developed for the alkali atoms and yields three-dimen-
sional evaporation surfaces. Unfortunately, radiofre-
quency evaporation requires low-field seeking atoms
which have the disadvantage of being in excited spin
states and therefore metastable with respect to dipolar
spinflips.

The phase transition was finally crossed at 50 µK
temperature and atomic densities of about 5 × 1015 cm–3.
The number of condensed atoms was 109, correspond-
ing to a limited condensed fraction of below 10%. At
higher condensed fractions and densities the losses due
to dipolar heating overrule the gain from evaporative

cooling of the thermal cloud [114], which is rather poor
because of the small scattering length. The needle-
shaped condensed cloud had 15 µm radial and 5 mm
axial extension.

The atomic sample was probed by ultra-high resolu-
tion two-photon Raman spectroscopy on the forbidden
1S–2S transition. The fluorescence photons could be
observed by Stark-quenching the 2S level via the
rapidly decaying 2P level. The spectrum shown in
Fig. 5 consists of a Doppler-sensitive and a Doppler-
free part which result from photons being absorbed
from the same laser beam or from counterpropagating
beams, respectively. The Doppler-free narrow peak is
red-shifted by cold collisions by an amount ∆ν1S–2S =
−3.8 Hz cm3 × n, and its width of a few kilo-Hertz is
mainly due to transit time broadening of the atoms fly-
ing through the small 50 µm waist of the laser beam.
The density dependence of the pressure shift is useful
for studying the density distribution of the cloud. The
Doppler-sensitive broad peak is blue-shifted by
6.7 MHz, i.e., twice the recoil-energy. It represents an
in situ measurement of the atomic momentum distribu-
tion and is in this respect complementary to imaging
techniques that either measure the spatial distribution in-
situ (Section 3.3.2) or the momentum distribution after a
time-of-flight (Section 3.3.1).

The condensate leaves its imprints on the two-pho-
ton spectrum. The Doppler-free peak has a shoulder,
that is red-shifted by –0.9 MHz and originates from a
region in the trap where the density is significantly
higher. This is a signature of BEC. The intrinsic width
of the shoulder is determined by the position-momen-
tum uncertainty, but is overruled by the broadening due
to the very inhomogeneous density distribution of the
BEC. The broad Doppler-sensitive peak develops a nar-
row structure that is qualitatively similar to the one of
the Doppler-free peak.

3.2.3. Fermions. Atoms are either bosons or fermi-
ons depending on whether their spin is integer or half-
integer. At high phase-space densities the atoms have to
sort out how they will organize their coexistence.
Bosons encourage each other to occupy the same
phase-space cell, in contrast to the reluctant fermions
which follow the Pauli exclusion principle. The differ-
ent behavior is described by different quantum statistics
which settle how the phase-space (i.e., the available
energy levels) has to be populated by the atoms. The
Bose–Einstein distribution holds for bosons, the
Fermi–Dirac distribution for fermions and both asymp-
totically approach the Boltzmann distribution at high
temperatures. We have seen that bosons undergo a
phase transition and all condense in the ground state as
the temperature is lowered. On the other hand, the fer-
mions must organize their phase space so that their
energy levels are organized like a ladder. This has
observable consequences at low temperatures. (1) The
internal energy of a fermionic gas is a little higher than
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expected according to classical statistics, because the
atoms drive each other out of the lowest energy levels.
(2) In a confining trap, the cloud resists compression,
its spatial density distribution is shaped by atoms push-
ing each other out of the trap center, where the potential
energy is lower. (3) The collision rate is strongly sup-
pressed, because the density cannot increase beyond a
certain limit. This last point makes ultracold Fermi
gases interesting for frequency standard applications,
because of the absence of pressure shifts.

It is, of course, very interesting to experimentally
confirm the impact of quantum statistics on a cold
Fermi gas. There are various fermions among the alkali
isotopes (see Table 2). DeMarco and Jin [103] carried
out experiments on potassium. They loaded a magnetic
cloverleaf trap from a MOT with 150 µK hot atoms and
initiated evaporative cooling. The problem with evapo-
rative cooling of fermions is that at ultralow tempera-
tures s-wave collisions between the spin-polarized
identical fermions dominate, and those are forbidden
by Pauli’s exclusion law. Because s-wave collisions
between distinguishable particles are possible,
DeMarco and Jin could circumvent this problem by
dividing the potassium cloud into two different internal
energy states and simultaneously cooling them. The
two energy states used were the |F, mF〉  = |9/2, 7/2〉  and
the |9/2, 9/2〉  Zeeman sublevels of the ground state.
Inside the magnetic trapping field the Zeeman states are
split. In order to maintain a 50% ratio during forced
evaporation, the evaporation edge of both Zeeman
states had to be controlled and ramped down separately
and simultaneously by two microwave frequencies
tuned between each of the Zeeman states and an
untrapped level of the F = 7/2 hyperfine state.

DeMarco and Jin cooled a two-component Fermi
gas of 7 × 105 potassium atoms down to 300 nK, which
corresponded to 60% of the atoms populating energy
levels below the Fermi temperature TF =

" (6ωz N)
1/3

. Then they selectively removed the
|7/2〉  atoms, took time-of-flight absorption pictures and
analyzed the momentum distribution. The onset of the
Fermi-statistical regime was observed as a barrier to
evaporative cooling at temperatures lower than 0.5TF

and also left its imprint on the momentum distribution.
The shape of the distribution deviated from the Gauss-
ian expected for classical gases, and the analysis of the
second moment of the distribution (which is indepen-
dent of any assumption concerning the exact statistical
distribution) showed a higher total energy than classi-
cally expected.

A possible next step could be the attempt of induc-
ing Cooper-pairing of fermions. Cooper-pairs are
bosons and it might be possible to cool them down to a
BEC phase transition. This effect is known from super-
conductivity, where Bose-condensed Cooper-paired
electrons move through a metal without friction. The
superfluidity of fermionic 3He is also explained by
Cooper-pairing. In dilute gases, however, this is most
likely a very difficult task, due to the lack of efficient
cooling mechanism at such low temperatures.

Table 2 lists the scattering lengths and transition fre-
quencies for some bosonic and fermionic alkalis. The
scattering lengths are either measured or calculated.
Many calculations on scattering lengths and interaction
potentials were carried out by Verhaar, Julienne,
Greene, Stwalley and their respective coworkers.

kB
1– ωr

2

Table 2.  Nuclear spin, scattering lengths and transition parameters for various isotopes. The fifth, sixth and seventh column
give the linewidth and the transition frequencies of the D1 and D2 lines, where applicable. The last column gives the ground
state hyperfine splitting, where applicable

Element I amixed atriplett γD2/2π D1 D2 νHFS[S1/2]

[aB] [aB] [MHz] [cm–1] [cm–1] [MHz]

1H 1/2 1.23 99.58 82264 82264
2H 1 –6.8
6Li 1 –2160 5.92 14901 14901 228.2
7Li 3/2 10 –27.3 803.5
23Na 3/2 52 85 10.01 16956 16973 1771.6
39K 3/2 118 81.1 461.7
40K 4 158 1.7 6.09 12985 13043 –1285.8
41K 3/2 225 286 254.0
85Rb 5/2 –450 –363 5.98 12579 12816 3035.7
87Rb 3/2 105 109.3 6834.7
133Cs 7/2 –240 –350 5.18 11182 11737 9192.6
135Cs 7/2 163 138
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3.3. Imaging Techniques

All methods of extracting information from a con-
densate used up to now are based on its interaction with
light. However, the methods differ in the kind of infor-
mation they yield. A detailed discussion can be found
in reference [115]. We will restrict ourselves here to
tracing the essential points.

We can either use frequency-domain high-resolu-
tion Doppler-sensitive Raman-spectroscopy [99] or just
take pictures of the spatial density distribution of the
atomic sample. Pictures are taken by irradiating with
the light of a probe beam and either imaging the fluo-
rescence of the atoms or the imprint of the atomic cloud
on the intensity distribution of the probe beam. The flu-
orescence method does not reproduce the density distri-
bution of optically dense clouds and is afflicted with a
small light collection angle. The imprint method can be
absorptive or dispersive. Absorptive imaging destroys
the sample and only works for optically thin clouds. It
is therefore commonly used in Time-of-Flight (TOF)
schemes on ballistically expanded clouds. Dispersive
imaging usually preserves the sample. It works for
thick clouds and is commonly used in situ on trapped
samples with far-off resonant probe light. Several
methods of dispersive imaging have been applied, nota-
bly dark-ground imaging, phase-contrast imaging and
polarization-contrast imaging. It is worth noticing, that
in order to get specific informations, one may manipu-
late the sample before imaging it. E.g., one can convert
momentum into coordinate information by ballistic
expansion or one can let a condensate interfere with a
reference condensate and extract information about the
matter-wave phase distribution.

3.3.1. Time-of-flight imaging. Time-of-flight (TOF)
absorption images are taken after nonadiabatic removal
of the trapping potential within a time much shorter

than the trap oscillation period, tswitch ! , which is
typically on the order of a millisecond. After a time
long enough to allow the initial velocity distribution of
the trapped BEC to convert into a spatial distribution of
the expanded cloud that is large enough to neglect the
initial spatial distribution, the cloud is irradiated with a
weak resonant probe beam. The shadow imprinted by
the cloud into the probe beam is imaged onto a CCD
camera. Several reasons make TOF imaging well-
suited for probing BECs. (1) The total number of atoms
can be derived from the missing photons in the probe
beam, (2) the velocity distribution directly reflects the
temperature, (3) the expanded cloud is optically thin
enough, not to saturate the probe beam shadow even if
the probe frequency is on resonance, (4) the expanded
cloud is large enough to be easily resolved with stan-
dard imaging systems and even to reveal structural
details. E.g., the shapes and aspect ratios of the con-
densed and thermal parts are different and permit their
visual separation. On the other hand, it is important for
TOF imaging to guarantee the sudden and free expan-

ωtrap
1–

sion of the cloud, which is a technically demanding
task.

The density of the thermal part nth(r) of an ideal
trapped Bose gas has been estimated in the semiclassi-
cal limit (Section 2.4) by Eq. (2.30), while its momen-
tum distribution  follows Eq. (2.31). Switching
off the trap suddenly removes all potential energy.
While the gas ballistically expands, the self-interaction
energy is adiabatically converted into kinetic energy

[116]. If we wait sufficiently long, t @ , the
expanded spatial density distribution nTOF(r, t) just traces
the original momentum distribution,

(3.13)

In the far wings, mr2/2t2 @ µ, the density of the thermal
cloud approaches a Gaussian distribution,

(3.14)

where we used kBT ≈ m /t2 and N =

(kBT/"ωtrap)3exp(µ/kBT). The quantity (2π)3/2  is
sometimes called effective volume. If we assume ther-
mal equilibrium between the thermal and condensed
fraction, the temperature can easily be extracted from
the far wings of the Gaussian (3.14), which are beyond
the spatial extension of the BEC wavefunction. The
generalization of the distribution (3.14) to nonisotropic
potentials is straightforward. The ideal-gas approxima-
tion is valid, because the thermal fraction is very dilute
compared to the condensed fraction.

While the thermal atomic cloud constitutes a statis-
tical ensemble, the condensed part is described by a sin-
gle complex wavefunction ψ0(r) that is a solution of the
Gross–Pitaevskii equation (2.45). Let us assume a har-
monic trapping potential Utrap(r). In the absence of
interactions, the ground state wavefunction is a Gauss-
ian, and it stays a Gaussian during ballistic expansion
although it changes its size and aspect ratio. In most
experiments, however, the interactions are strong,
g|ψ0(r, t)|2 @ "ωtrap . In this so-called Thomas–Fermi
limit, we can neglect the kinetic energy term in
Eq. (2.45). The solution is a parabolically shaped den-
sity distribution, which preserves its shape during bal-
listic expansion [117] (Section 4.1). The chemical
potential µ can be estimated in the Thomas–Fermi limit
from the width of the expanded condensate µ ≈
m /t2.

In summary, absorptive TOF imaging permits the
unambiguous measurement of N, Nc , T, and µ and the
derivation of Tc from Nc = g3(1)(kBTc/"ωtrap)3. However,
we still have to establish the relationship between the

ñth p( )

ωtrap
1–

nTOF r t,( ) m3t 3– ñth mr/t( )=

=  λdBωtrapt( ) 3– g3/2 e
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expanded cloud density (3.14) and the absorption pro-
file that the cloud imprints into the probe beam.

Optical density. The influence of the atoms on the
probe beam is described by the complex refraction
index nref , which can be linked to the optical cross sec-
tion σ(∆) and easily be calculated from the optical
Bloch equations for a two-level atom in the rotating-
wave approximation [118]:

(3.15)

If the atomic cloud is small and dilute, the amplitude of
the probe beam is locally attenuated and phase shifted:

(3.16)

The absorption coefficient or optical density α is the

product of the column density  and the optical

cross section, where the integration is over the imaging
direction. Close to resonance, the interaction is well
described by the Lambert-Beer law, I = I0e–α, where

(3.17)

The CCD camera actually records the intensity distri-
bution of the probe beam I(x, y) that went through the
atomic cloud. Inhomogeneities in the intensity distribu-
tion can be compensated by taking a reference picture
without atoms and calculating I(x, y)/I0.

3.3.2. In situ imaging. TOF imaging is a one-shot
measurement and destroys the sample. As mentioned
earlier, absorptive in-situ imaging is accompanied by
the problem of large local phase shifts of the probing
beam due to the optical thickness of the cloud. Mea-

nref 1
n r( )λσ ∆( )

4π
------------------------ i

2∆
Γ

-------– 
  .+≈

E E0
2πi
λ

-------- nref 1–( ) zd∫ E0e α /2– eiδ.≡exp=

n r( ) zd∫

α x y,( ) σ0 n r( ) z.d∫=

surements have been carried out in this regime [104],
but they have only yielded reliable values at the surface
of the trapped cloud, where the density is small. The
problem can be circumvented by dispersive imaging,
which additionally possesses several other advantages.

If we increase the detuning, the dispersion coeffi-
cient δ defined in Eq. (3.16) decreases, but the absorp-
tion α decreases faster, because δ = α∆/Γ. Very far from
resonance, the heating due to absorption and spontane-
ous emission is insignificant and the BEC will not be
destroyed. The probe beam also phase-shifts the matter-
wave and should have uniform intensity distribution in
order to prevent the formation of matter-wave phase
gradients. The local phase shift in the probe beam cross
section can be turned into an intensity profile using the
method of dark ground imaging or phase contrast
imaging [115].

Andrews et al. have used dispersive, nondestructive
imaging techniques [119], that allows taking up to
20 images of the trapped BEC without significantly
perturbing it. This permits to watch the condensate
dynamics, e.g., the response to trap perturbations, on-
line. Bradley et al. [110] took phase-contrast images
which exploit the birefringence of the atoms in the
strong magnetic field offset of their trap. Confined in a
trap, the thermal and condensed fractions of a cloud are
not well separated. Therefore, in situ imaging is not
well suited for determining the thermodynamic quanti-
ties at the phase transition. However, at low tempera-
tures, where most atoms are condensed, Nc and µ can be
measured from the size and shape of the observed cloud.
A technical disadvantage of in situ imaging is the need of
a very high resolution imaging system allowing to map
the tiny sample. The size of some small structures in the
condensate wavefunction, e.g., vortices and solitons,
may even be beyond the diffraction limit.

3.4. Measurements on Condensate Equilibrium 
Thermodynamics

The measurement of the temperature dependence of
thermodynamical quantities at the phase transition
reveals important information about deviations from
the ideal gas behavior due to particle interaction, finite
size effects and spatial confinement (Chapter 2). Dilute
gases are almost ideal systems, the nonideal features
are quite small. Therefore they present a better oppor-
tunity to study the thermodynamics of Bose phase tran-
sitions than other systems, e.g., 4He where the con-
densed fraction Nc/N is difficult to measure and the
critical temperature Tc is difficult to calculate.

The time-of-flight absorption pictures yield a num-
ber of informations. One can extract the total number of
atoms N from the missing photons in the probe beam
shadow. Two independent two-dimensional Gaussians
are fit to the thermal and the condensed part, thus allow-
ing the determination of Nc . The temperature T of the
sample can be estimated by fitting Gaussians to the

100

0
0

2 4 6 8 10 12–1
Laser detuning, MHz

200

300
Signal, counts/s

5000 counts/s

Fig. 5. Two-photon absorption spectrum of hydrogen. The
narrow Doppler-free peak at negative detunings and the
broad Doppler-sensitive peak at positive detunings acquire
characteristic shoulders when a BEC is present (courtesy
of [99]).
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thermal cloud (outer wings of the total TOF density dis-
tribution) assuming thermal equilibrium between ther-
mal and condensed clouds and a Maxwell–Boltzmann
velocity distribution for the thermal cloud. The scaling
temperature Tc is chosen to be the critical temperature
(2.23) for an ideal harmonically trapped Bose gas in the
thermodynamic limit (Table 1). Various experiments
[6, 120] verified that the condensed fraction Nc/N
reproduces well the theoretical dependence (2.22)
expected for ideal Bose gases in the thermodynamic
limit (Table 1). This means, that the gas is so ideal, that
any nonideal gas feature is difficult to be quantitatively
measured against the experimental shot-to-shot noise
and calibration uncertainties.

However, the measurement of other thermodynamic
quantities like the energy and the heat capacity
[103, 120] displayed significant deviations from ideal
gas behavior and emergence of interaction effects. The
same ballistic expansion data set used for determining
the condensed fraction can be fit by an arbitrary model-
independent density distribution,  if we only make
sure, that its zeroth moment is normalized to the atom

number N = , where k = mr/"tTOF. Depend-

ing on the chosen distribution, the quality of the fit may
be better or worse, but in any case, the second moment

gives the kinetic energy, U = , where

Ekin = "2k2/2m. For trapped ideal gases the virial theo-
rem ensures E = Ekin + Epot = 2Ekin , however for real
gases the repulsive meanfield energy adds up, E =
Ekin + Epot + Eself . The sudden switch-off of the trapping
potential nonadiabatically removes the potential energy
Epot . The kinetic and the self energy of the BEC are
converted into pure kinetic energy during the ballistic
expansion. This energy, Ekin + Eself , (sometimes called
release energy) is measured by TOF measurements. We
can expect the temperature dependence of the mea-
sured release energy to correspond to the dependence
of the total energy. The heat capacity derived from both
quantities should give the same results. Despite the
experimental noise, the release energy measurement
data clearly show a change of slope at the phase transi-
tion. Figure 6 shows measurements of the kinetic
energy after 10 ms ballistic expansion.

The measurement was strictly model-independent
and contained no assumptions on the quantum statisti-
cal nature of the particles or on particle interactions. It
would be interesting to compare the results to theories
in various limits, i.e., the ideal gas in the thermody-
namic limit or by taking into account finite number
effects [39] and particle interactions. However, the
accuracy of the experiment does not permit quantitative
conclusions. It only shows, that the effect of mean-field
repulsion is to increase the energy and to reduce the dis-
continuity of the temperature-derivative of the energy
at the phase transition.

ñ k( )

ñ k( ) k3d
V∫

Ekinñ k( ) k3d
V∫ CHAPTER 4.

EXPERIMENTS ON CONDENSATE DYNAMICS

The experimental achievement of Bose–Einstein
condensation in dilute gases triggered a wealth of theo-
retical and experimental work on the characteristics
and dynamics of Bose-condensed gases. The early
work focused on the equilibrium thermodynamics of
condensates (discussed in Section 3.4) and their
dynamic response to perturbations, especially when
they are near the critical point. Since then, breathtaking
progress has advanced the field of investigations:
Exotic states like vortices, solitons and multispecies
condensates have been created, collision resonances
have been found, experiments on the interaction of
BEC with light have been carried out, and various kinds
of atom lasers have been constructed. Chapters 4 to 6
are devoted to giving a brief overview and résumé of
recent experiments involving Bose–Einstein conden-
sates. In the present chapter, we focus on experiments
on the dynamics of condensates and of binary mixtures
of condensates.

4.1. Wavepacket Dynamics

The dynamics of Bose–Einstein condensates is gen-
erally studied by observing the modification of the
shape of the condensate wavepacket in response to
time-dependent variations of the trapping potential.
The simplest time-dependence imaginable is the sud-
den removal of the trapping potential. Indeed, the first
experiment performed on BECs was the study of free
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–0.2

0
∆

Fig. 6. Measurement of the scaled release energy per parti-
cle versus reduced temperature at the phase transition.
Straight line is ideal Boltzmann gas, dashed line finite num-
ber ideal Bose gas [39] and solid curved line fit to the data
(courtesy of [120]).
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expansion [3] (Section 3.3.1). Contrary to the thermal
phase which expands isotropically independently of the
shape of the trap, the shape of the expanded condensate
reflects the trap geometry. The condensed ground state
is described by a single macroscopic quantum mechan-
ical wavepacket and expands predominantly into those
dimensions originally constrained by the trap. E.g., the
BEC aspect ratio reverses during free expansion
[90, 117]. Additionally, as the condensate is much
denser than the thermal cloud, the condensate self-
interaction is much stronger. This repels the atoms and
enforces the dynamical evolution described above. Fig-
ure 7 shows the evolution of the aspect ratio of a
released sodium condensate.

The time-dependence of the trapping potential may
also be an oscillatory or pulsed small perturbation, e.g.,
a tiny modification of the magnetic trapping fields, a
pulsed local anisotropy induced by the dipole force of
far-detuned laser beams, a manipulation of the conden-
sate self-interaction or density oscillations induced by
light coupling to internal or motional degrees of free-
dom. We will return to these techniques in Section 4.3.

4.2. Multicomponent Condensates

4.2.1. Double species condensates in 87Rb. Mix-
tures of Bose condensates in different internal states are
expected to suffer from relaxation due to spin exchange
processes during mixed collisions. Indeed, a collision
may scatter atoms into untrapped states or else grant
sufficient kinetic energy to eject the atoms from the
trap. In the case of rubidium, the fortuitous coincidence
between the singlet and triplet ground state scattering
lengths reduces the collisional losses for any mixture of
spin states. In particular, it allows the coexistence of
BECs in the low-field seeking states |F, mF〉  = |2, 2〉  and

|1, –1〉  [121]. Such double-species condensates have
been observed in experiment [7]. When the magnetic
trap is loaded with atoms in both hyperfine states, the
|1, –1〉  cloud being less severely confined, extends to
larger radii and thus experiences larger magnetic trap-
ping fields. During forced radiofrequency evaporation
hot |1, –1〉  atoms see a lower potential edge than |2, 2〉
atoms and are evaporated faster. If the rate of rethermal-
izing elastic interspecies collisions is large enough, the
|2, 2〉  cloud is cooled sympathetically and simulta-
neously with the |1, –1〉  cloud. Under the influence of
gravity |1, –1〉  atoms sag further down into the trapping
field than |2, 2〉  atoms, but the displacement is typically
smaller than the size of the condensates. Separate imag-
ing of the two BEC components therefore requires
appropriate hyperfine-pumping and probing cycles in
order to discriminate the two hyperfine states [7].

An alternative method to create two-component
BECs has been demonstrated by Matthews et al. [122].
They irradiated a |1, –1〉  BEC with a microwave-radiof-
requency two-photon radiation pulse tuned to the |2, 1〉
state, ωmicro/2π ≈ 6.8 GHz and ωradio/2π ≈ 2 MHz. With
600 Hz Rabi-frequency, which is much faster than the
secular frequencies of the (uncompressed) trap,
ωtrap/2π ≈ 100 Hz, they were able to suddenly transfer
nearly 100% of the lower state population to the excited
|2, 1〉  state. By transferring only part of the population,
they could suddenly spatially mix the two BEC species
and study the complicated nonlinear dynamics of spa-
tial reorganization and component separation [123].
The influence of gravity on the TOP trap makes it pos-
sible to control the relative vertical displacement of the
|1, –1〉  and |2, 1〉  states by judiciously choosing the val-
ues for the trapping field strengths and the TOP rotating
frequency [124] and thus allows to realize a consider-
able overlap region of the two BEC species. The repro-
ducibility of the experimental conditions were good
enough to trace the dynamical evolution with destructive
time-of-flight imaging by repeating the whole procedure
of creating and manipulating the sample. The dynamics
is essentially governed by the ratios of scattering lengths
between the different components, which have been
determined to be a|1, –1〉 : a|1, –1〉|2, 1〉 : a|2, 1〉 = 1.03 : 1 : 0.97

[122, 123]. Because a|1, –1〉|2, 1〉/  ≈ 1.0005 > 1,
the components weakly repel each other. The |1, –1〉
cloud has a slightly positive buoyancy with respect to
the |2, 1〉  cloud.

The coherent coupling of two distinguishable BECs
occupying the same region of space has proven a useful
tool for several important experiments: The observation
of compression oscillations induced by the sudden
transfer between the hyperfine states (Section 4.3.1),
the creation of vortices in double condensate systems
(Section 4.3.4) and the realization of an internal state
BEC interferometer (Section 5.3.1).

4.2.2. Spinor condensates in 23Na. In order to cre-
ate a spatial overlap of condensates in different internal
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Fig. 7. Temporal evolution of the aspect ratio of suddenly
released BECs. The cloverleaf trap had the trapping fre-
quencies ωr = 2π × 248 Hz and ωz = 2π × 16 Hz (courtesy
of [115]).
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states, it is necessary for the atoms to be confined in a
common trap and not to suffer from spin relaxation pro-
cesses. Pure dipole-force optical traps, e.g., red-
detuned far-off resonance traps (FORT) are not sensi-
tive to the Zeeman state of the atoms. Therefore, they
can trap high field seeking states which cannot be con-
fined in magnetic traps, or even mixtures of atoms
being in all Zeeman substates of a hyperfine level. Fur-
thermore, they avoid (spatially inhomogeneous) Zee-
man shifts. While attempts to directly produce BECs in
optical traps have not been successful yet, |1, –1〉
sodium condensates have been loaded from a magnetic
trap into a FORT [78]. Due to the low kinetic energy of
BECs, the optical trap can be made very shallow, so
that low power far-detuned lasers may be used. In their
experiment, Stamper-Kurn et al. [78] needed only a few
milliwatts of laser power at 985 nm wavelength focused
down to 6 µm waist creating a few microkelvin deep
potential to reach trapping lifetimes on the order of
10 s. On the other hand, dipole traps are an order of
magnitude steeper than magnetic traps, /2π ≈
40−400 Hz. Consequently, very high densities between
n = 3 × 1014 and 3 × 1015 cm–3, mainly limited by three-
body recombination, can be reached.

In a subsequent experiment, Stenger et al. [8] lifted
the Zeeman degeneracy by application of a weak mag-
netic field and coupled the |1, –1〉  state to the other Zee-
man states |1, 0〉  and |1, 1〉  by irradiation of resonant
radiofrequency. The population could be completely or
partially transferred between the states. The resulting
three component BEC quantum field is described by a
spinor. Several interesting features of the dynamics of
spinor BECs have already been observed, e.g., the for-
mation of spin domains, the miscibility of the |1, 1〉  and
|1, –1〉  and the immiscibility of the |1, ±1〉  and |1, 0〉 , the
antiferromagnetic behavior of the spin-dependent
atomic interaction [8], the metastability of spin
domains against very small (0.1 nK) energy barriers
[125], and quantum tunneling across spin domains
[126] (Section 5.3.2). A review of the experiments on
spinor condensates can be found in [127]. Spinor BECs
are also interesting candidates for studies of nonlinear
four-wave mixing processes [28, 128] (Section 5.4.5).

4.3. Collective Excitations

4.3.1. Elementary excitations. Elementary excita-
tions (also called quasiparticles or normal modes) of
the Bose–Einstein condensate are solutions of the lin-
earized Gross–Pitaevskii equation. The coherent exci-
tation of many quasiparticles leads to collective oscilla-
tions or density modulations (also called sound) of the
trapped atomic cloud. Technically, the excitations are
generated in response to small time-dependent pertur-
bations of the trapping potential. There are various pro-
cedures and consequently various types of excitations.
The first experiments have been performed by modulat-
ing the trapping potential [129, 130] and resulted in the

ω̃trap

observation of center-of-mass oscillations (also called
sloshing modes) and shape oscillations. The frequen-
cies of those excitations agreed well with theoretical
calculations [131–133]. The oscillations were damped
by interactions between the collective mode and ther-
mal excitations. The temperature dependence of the
damping has been experimentally studied by Jin et al.
[134].

At JILA, microwave-radiofrequency double-reso-
nance transitions have been used to suddenly transfer a
87Rb condensate from the |1, –1〉  into the |2, 2〉  internal
atomic state. This state has the same magnetic moment,
but a slightly different scattering length, a|1, –1〉 ≠ a|2, 1〉 ,
and therefore a different mean-field energy gn0 =
4π"2a|2, 1〉n0/m , where n0 is the peak density of the con-
densed cloud. The wavefunction immediately starts to
adjust its shape to fit into the modified environment and
commences oscillating. These damped compression
oscillations have been recorded (Fig. 8) and by compar-
ison to a theoretical model permitted the determination
of the ratio of scattering lengths of the two states [122]
(Section 4.2.1).

The range of excitations accessible by modulating
the magnetic trapping fields is limited. Sophisticated
engineering of the perturbation is required to excite
more complicated excitations like higher multipolar
order surface oscillations [135]. Focused far-off reso-
nant laser beams are a useful tool to push around the
atoms inside a BEC. They have also been used to
observe the propagation of sound pulses by generating
a short small local density perturbation and tracing its
way through the condensate [77]. The temporal behav-
ior of excitations is best studied by taking a rapid
sequence of nondestructive images (Section 3.3.2).

The nature of the excitations profoundly depends on
their de Broglie wavelengths k–1 = ("/2mωk)1/2 com-
pared to three characteristic lengths. Those are the
mean free path for quasi-particles lmfp ≈ (nthσel)–1, the
size of the ground state of the trapping potential atrap =
("/mωtrap)1/2 and the healing length

(4.1)

Here a = 53aB is the sodium s-wave scattering length
for the F = 1, mF = –1 state, the cross section for elastic
collisions is σel ≈ 8πa2. Typical experimental values for
a sodium condensate are "ωtrap ≈ h 100 Hz and gn0 ≈
h 7 kHz, the characteristic lengths are roughly on the
order of lmfp ≈ 100 µm, atrap ≈ 2 µm, and ξ ≈ 0.2 µm. The
mean free path marks the boundary between the hydro-
dynamic regime, k–1 @ lmfp , and the collisionless
regime (in the sense of quasiparticle collisions), k–1 !
lmfp . The trap size delimits the regime of discrete collec-
tive modes, k–1 * atrap , from the regime of pulsed local-
ized excitations, k–1 < atrap . The healing length, finally,
sets the boundary between the regimes of phonon-like
excitations, k–1 @ ξ, and particle-like excitations, k–1 ! ξ.

ξ 1/ 8πan0.=
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The trap manipulation methods mentioned so far are
restricted to the collisionless regimes of discrete collec-
tive modes and pulsed localized excitations. The hydro-
dynamic regime of low energy excitations has barely
been approached in experiments [136], and the oppo-
site regime of high energy localized excitations, k–1 
atrap , has been investigated employing the newly devel-
oped method of Bragg spectroscopy [137, 138]. This
technique allows to probe excitations over a very large
range of frequencies. It is particularly well suited for
high frequencies and therefore provides a useful tool to
probe the boundary between the regimes of phonon and
particle-like excitations. We will return to this in Sec-
tion 5.4.2. The hierarchy of length scales formed by the
various regimes of collective excitations and the exper-
imental method to produce them are summarized in
Table 3.

4.3.2. Noncirculating topological modes. Topo-
logical modes are stationary solutions of the Gross–
Pitaevskii equation (2.45), that are not the ground-state.
There have been some proposals on the creation of such
non-groundstate Bose condensates [139], and an anti-
symmetric dipole topological mode has recently been
created in experiment. Williams et al. [140, 141] used a
coherently coupled double-species condensate. The
total order parameter for such a system is a two-dimen-

!!

sional spinor Ψ(r, t) ≡ (ψ|1, –1〉, ψ|2, 1〉). We may also view
the spinor field as a spatially varying Bloch vector
describing the local internal coherence and inversion of
the two-level atoms that form the BEC [141],

(4.2)

The gravitation, whose direction is assumed to coincide
with the symmetry axis of the TOP trap, modifies the
magnetic trapping potential and displaces the trapped
|1, –1〉  and |2, 1〉  clouds vertically from one another by
a tunable amount. When coupling the states with a
microwave-radiofrequency two-photon radiation, the
axial displacement makes the generalized Rabi-fre-

quency position-dependent, G(z) ≡ . The
effect of the inhomogeneous coupling strength is a non-
uniform precession and nutation speed of the local
Bloch vector and consequently a spatial modulation of
the inversion, which comes down to generating a differ-
ential torque on each of the single-component wave-
functions. The torque corresponds to a matter-wave
phase shift and ultimately reaches a point, where the
matter-wave phase twist is 2π across the condensate
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Fig. 8. Compression oscillations in experiment (dots) and theory (solid line) along the radial and axial directions (courtesy of [122]).

Table 3.  Characteristic length scales for elementary excitations

Regime k–1 Method

Hydrodynamic @lmfp Large BECs, high temperatures

Collisionless !lmfp Trap modulation

Collective discrete modes @atrap Trap modulation, standing soundwave

Pulsed localized modes !atrap Dipole force laser beam, propagating soundwave

Photon-like @ξ Bragg scattering

Free particle-like !ξ Bragg scattering
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along the z-axis. This state is the dipole topological
mode. Applying the torque furthermore untwists the
phase winding until the condensate finds back to its
original state.

In the JILA experiments [141, 142], the time-evolu-
tion of the local inversion [third component of the
Bloch vector (4.2)] and the total space-integrated inver-
sion were monitored nondestructively and on-line by
taking sequences of phase-contrast pictures. The probe
beam was tuned between the hyperfine states, so that
the |2, 1〉  atoms stepped out as rising and the |1, –1〉
atoms as deepening from the background. The Rabi-
flopping of the total space-integrated inversion exhib-
ited a behavior reminiscent to quantum collapse and
revival well-known to occur in Jaynes–Cummings type
systems studied in quantum optics. The epitome of a
Jaynes–Cummings system is a two-level atom coher-
ently coupled to a single-mode light field. The driven
atom is able to momentarily bury its coherence by
transferring it to quantum correlations of the light field.
Tracing over the degrees of freedom of the light field,
the atomic coherence appears to momentarily collapse
and revive at a later time. The coupled system consist-
ing of the BEC matter-wave and the internal atomic
degrees of freedom behaves similarly. If all atomic
dipoles oscillate in phase (groundstate BEC), the
space-integrated inversion exhibits strong Rabi-oscilla-
tions (Fig. 9). If the matter-wave field is strongly mod-
ulated (twisted condensate, higher topological mode),
the atomic dipoles oscillate at different phases, and the
Rabi-oscillations of the space-integrated inversion can-
cel out. Under the influence of the inhomogeneous cou-
pling strength G(z) the system gradually changes its
topology and thus causes the collapse and revival of the

Rabi-oscillations. A quantitative model can be found
in [142].

Matthews et al. [141] extended the experiment later
by adjusting the condensate shape for long axial exten-
sion, exploiting the tricky TOP-gravitation interplay.
The radiation twists the system more and more, succes-
sively cranking up to four windings into the BEC. Past
some point, the radiation untwists the system again
until it finds its way back to the original form.

4.3.3. Superfluid flow. Superfluid liquids or gases
are distinguished by their ability to support dissipation-
less flow, i.e., flow that is exempt from viscous damp-
ing. The phenomenon of superfluidity is a well-known
property of liquid 4He, but the relationship between
superfluidity and Bose–Einstein condensation in this
strongly interacting system is not trivial. The situation
is much simpler in weakly-interacting Bose gases,
where the superfluid phase is nearly identical with the
condensed fraction, and the normal fluid phase with the
thermal fraction. The availability of dilute gas Bose
condensates offers the unique opportunity to study the
superfluid-condensate interdependence. The early
experiments on the dynamical behavior of condensates
at very low temperatures already provided indirect sig-
natures of their superfluid nature, because the hydrody-
namic theory of superfluidity describes well the collec-
tive excitations, as we have pointed out in Section 4.3.1.
Furthermore, the observation of matter-wave interfer-
ence (Section 5.2.2) is an indication for superfluidity,
since quantum coherence is a characteristic of superflu-
ids.

Several experiments provided direct evidence for
the superfluid nature of condensates. Raman et al.
[143] performed a calorimetric measurement of the dis-
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Fig. 9. Measured (upper curve) and calculated (lower curve) Rabi oscillations of the space-integrated fractional population of the
lower hyperfine state (courtesy of [142]).
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sipation induced by stirring a condensate with a far
blue-detuned laser beam. The thermal fraction of the
atomic cloud was measured before and after stirring by
standard time-of-flight imaging and fitting a bimodal
density distribution to the condensed and thermal
phases of the cloud (Section 3.3.1). They observed a
critical value for the stirring velocity v c: For lower
velocities, the perturbation was found to be dissipation-
free, at higher velocities phonons were excited and the
cloud was heated. In a subsequent experiment, the den-
sity fluctuations induced by stirring were observed on-
line and in situ [144]. When the stirring velocity was
inferior to the critical velocity, the density was quasi
stationary at any instant of time thus indicating super-
fluid flow. However, when the stirring velocity
exceeded v c , the stirring beam dragged the atoms piling
them up in front of it. The resulting pressure gradients
led to turbulent flow around the perturbation and dissi-
pation. Taking the asymmetry of the instantaneous den-
sity distribution resulting from the bow and the stern
wave of the moving laser beam as a measure for the
amount of dissipation, Onofrio et al. determined a crit-
ical velocity that agreed with the result of the calorimet-
ric measurement.

The critical velocity v c found in the stirring experi-
ment was about ten times smaller than the local speed
of sound which is inversely proportional to the super-
fluid healing length (4.1),

(4.3)

In fact, while the onset of dissipation is accelerated by
turbulence around the macroscopic object traversing
the superfluid, the local speed of sound (4.3) is derived

cs "/ 2mξ .=

for a microscopic object. Chikkatur et al. [145] studied
the motion of impurity atoms through a condensate. For
that purpose, they produced an impurity BEC with well
defined initial velocity out of the original BEC by
inducing Raman transition from the trapped |F = 1,
mF = –1〉  state to the untrapped |F = 1, mF = 0〉 . The ini-
tial velocity was set by arranging the Raman laser
beams (polarization, encompassed irradiation angle,
relative detuning) to satisfy the Bragg condition (Sec-
tion 5.3.3) and the selection rules for the Raman transi-
tion. The impurity, not being constrained by the trap,
traversed the BEC before the trap was switched off, a
Stern-Gerlach magnetic field gradient was pulsed to
spatially separate the atoms being in different hyperfine
states and the atoms were probed by time-of-flight
imaging. When the initial velocity was well above a
critical value that coincided with the local speed of
sound, ultracold s-wave collisions between the impu-
rity atoms and the stationary condensate distributed the
momentum of the collision partners evenly and, in the
TOF images (Fig. 10), gave rise to a circular halo cen-
tered around the center-of-mass of the collision part-
ners. However, when the initial velocity was reduced,
the collision rate between the impurity and the station-
ary condensate was suppressed and the trajectory was
more superfluid.

4.3.4. Vortices. Important manifestations of super-
fluidity are associated with rotational phenomena. An
example is the occurrence of scissors modes [146] that
are excited when an angular momentum is suddenly
applied to an anisotropic BEC. Scissors modes have
been generated by Maragó et al. [147]. They produced
a BEC in an anisotropic trapping potential and then
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Fig. 10. Impurity scattering within a BEC. Elastic collisions between the condensate and impurity atoms traveling at 6 cm/s (towards
the left in the images) distributed the momentum of the collision partners over a sphere showing up as a halo in 50 ms time-of-flight
absorption images (a). In Fig. (b) a Stern–Gerlach type magnetic field gradient has been applied to separate the mF = 0 atoms from
the mF = –1 condensate. The fringes are an imaging artifact (courtesy of [145]).
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suddenly reoriented the inclination of the symmetry
axis of the trap. The response of the BEC wavefunction
is a pure oscillation of its tilt generated by irrotational
superfluid flow. The excitation spectrum reflects the
strong reduction of the moment of inertia for the super-
fluid.

The most stringent manifestation of superfluidity,
however, is the occurrence of quantized and persistent
currents, called vortices. Vortices are stationary solu-
tions (or topological modes) of the Gross–Pitaevskii
equation (2.45) that, under the assumption of a cylindri-
cally symmetric system, additionally satisfy the condi-
tion ψ(r) = ψ(r, z)eiκϕ, where κ is an integer. In a vortex,
the superfluid current is driven by the phase gradient,
v = "/m∇ϕ . The superfluid flow around a close path
must by quantized to make the wavefunction single-

valued,  = 2π"/m, i.e., the phase winds up to mul-

tiples of 2π. Also, the flow must be persistent, because
its winding number can only be changed discontinu-
ously by overriding an energy barrier, which requires
energy from thermal excitations. The normal compo-
nent of a gas can have, of course, circular flow, as well.
However, the disorderly microscopic motion of every
individual particle causes a viscous drag that precludes
the persistence of the flow in the absence of a driving
torque. This is in contrast to superfluid flow which per-
sists even without an externally imposed rotation.
Questions about the stability, the formation and the
topology of vortices have been addressed in recent
experiments [9, 10, 148–150].

Stability. In a topologically singly-connected trap
(e.g., harmonic potential), vortices are not the lowest
energy eigenstate, and they must decay into the ground
state. If the mean-field interaction energy of the con-
densate is weak compared to the kinetic energy,
gn0/"ωz ! 1, the healing length is larger than the size of
the condensate, ξ @ atrap , and the vortex rapidly decays
dissipating the excess energy to thermal excitations.
Such Bose condensates cannot be considered super-
fluid. If the mean-field interaction is strong, the vortex
spontaneously breaks the azimuthal symmetry, dislo-
cates from the center and spirals out of the condensate
[151]. However, the decay time may be pretty long, and
under certain conditions a vortex might be trapped off
center. On the other hand, a vortex can be the ground-
state in multiply-connected traps (e.g., torus-shaped
potentials). Such a potential can be realized as the time-
average of a harmonic potential with a small rotating
anisotropy [10]. Another scheme uses harmonically
trapped double-condensates where a ground-state BEC
is located at the trap center. An excited internal state
BEC can form a vortex in a circular orbit around the
ground-state BEC [9]. If the condensates repel each
other, the vortex core is pinned by the ground state
BEC, so that the vortex is very stable.

Formation. The ideas on how to create vortices can
be divided into two classes. Some propose to imprint an

vdr∫°

angular momentum into the atomic cloud by rotating
the (anisotropic) trap during the process of forced evap-
oration. This can be done with rotating magnetic fields
or by stirring the atomic cloud with a laser beam. When
crossing the phase transition, a vortex state should
nucleate within the stirring path. Others propose to
imprint a circular 2π phase gradient into a previously
created condensate. These procedures must drive the
local density in the center of the trap to zero and then
rely on dissipative relaxation of the BEC into the vortex
state. Dobrek et al. suggested to exploit the inhomoge-
neous Stark-shift which a far-detuned optical beam
with an appropriately designed intensity profile gener-
ates in a BEC [152]. An alternative method based on the
phase imprinting idea but avoiding the need of relax-
ation processes has been suggested by Williams et al.
[140]. In their configuration the phase gradient is cre-
ated via adiabatic Raman-transfer between two internal
states of the condensate atoms within a small rotating
area of space. Thus a coherent process is used to
directly build and shape the vortex wavefunction.

The first experimental evidence for vortices was
reported by Matthews et al. [9]. They produced and
recorded vortices in a coupled double-species conden-
sate system using a method based on the phase imprint-
ing idea. The method consisted in dynamically convert-
ing atoms from a nonrotating |1, –1〉  ground-state BEC
to |2, 1〉  atoms (or vice versa) having a torus-shaped
topology by time-dependent and spatially inhomoge-
neous adiabatic population transfer.

In the experiment, Matthews et al. [9] produced a
standard |1, –1〉  ground-state BEC with a size of typi-
cally rrms = 54 µm in an isotropic harmonic TOP trap
with ωtrap/2π = 7.8 Hz secular frequency. They coher-
ently coupled the two hyperfine states using two-pho-
ton microwave radiation tuned ∆rf /2π = 94 Hz below
(or above) the resonance and adjusted the radiation
power to produce Ωrf /2π = 35 Hz Rabi frequency thus
causing the Bloch vector of the two-level system to pre-

cess with the generalized Rabi frequency Grf = (  +

)
1/2

 = 2π × 100 Hz. Spatial and temporal control
over the conversion rate between the hyperfine states
was achieved by additionally focusing a moveable laser
beam (P = 10 nW, w0 = 180 µm) onto the cloud and
rotating it with frequency ωrot at a distance rrot = 75 µm
around the symmetry axis of the trap. The laser was
detuned ∆l/2π = 800 MHz blue from the 87Rb D2 line
thus giving rise to an inhomogeneous time-dependent
AC Stark-shift Ωl(r, t)2/4∆l , where Ωl is the Rabi fre-
quency on the D2 transition. While ground-state atoms
located at the center of the trap did not sense the mod-
ulation of the Stark-shift, atoms located at distance rrot

from the trap center were subject to the full modulation
depth and experienced the microwave radiation on two
modulation sidebands located at ∆rf ± ωrot . In order to
fulfill the resonance condition for one of the sidebands

Ωrf
2

∆rf
2
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and drive transitions from the ground-state to the |2, 1〉
state, the rotation frequency was adjusted to the preces-
sion frequency, |ωrot | = Grf . This is equivalent to ensur-
ing, that the phase delay of the precessing two-level
Bloch vector, Grf t, was equal to the azimuthal matter-
wave phase variation of the newly created |2, 1〉  atoms,
ωrott, along the rotation path, and that the matter-wave
phase was single-valued around a closed loop. The mat-
ter-wave phase gradient caused circular flow and
formed a visible vortex after about 70 ms. The direction
of the vortex rotation could be arbitrarily chosen
through the sign of the detuning ∆rf . Vortices could be
formed either in the |1, –1〉  state around a central |2, 1〉
BEC or vice versa. The small positive buoyancy of the
state |1, –1〉  with respect to |2, 1〉  made the first option
more stable.

While in harmonically trapped single-species con-
densates the diameter of the vortex core is on the order
of the healing length 2ξ and too small to be seen by
in situ spatial imaging, in the double-species configura-
tion the diameter of the vortex core is much larger,
because it is determined by the size of the central core
BEC. The core BEC can partially or completely be

removed with resonant light pressure and the vortex be
studied as a function of the core size and the filling
material. To see the vortex, Matthews et al. took a non-
destructive image of the density distribution of the
upper |2, 1〉  state. Then, on the same sample, they
applied a resonant two-photon radiofrequency π/2
pulse which mixed the vortex with the core BEC. The
resulting ring-shaped matter-wave interference pattern
reveals the phase profile of the vortex. This Ramsey type
interference technique will be detailed in Section 5.3.1.
Finally, a second radiofrequency π/2 pulse completely
inverted the population of the states |2, 1〉  and |1, –1〉
and permitted recording the density distribution of the
nonrotating ground state (Fig. 11).

Vortex precession. A radial force acting on a vortex
results in its azimuthal displacement and precession
around the symmetry axis. The effect is known as Mag-
nus effect [153] and is due to pressure imbalances at the
vortex surface. A radial force arises naturally when the
core is displaced from the center, because local pres-
sure gradients tend to force it outwards to lower density
regions. Anderson et al. [150] observed a roughly 1 Hz
slow precession of the vortex core by a succession of
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Fig. 11. Density distribution (a) of the vortex state (the visible atoms are in the upper hyperfine state), (b) after a π/2 pulse, and
(c) after a π pulse (the visible atoms are in the lower hyperfine state). The images (d) and (e) visualize the phase slip around the
vortex (courtesy of [9]).
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nondestructive images for various sizes of the core
BEC. A radial motion of the vortex as expected for dis-
sipative interaction with a thermal cloud was not
observed. Instead, the vortex core decreased its size due
to gradually reduced repulsion of the slowly decaying
core BEC.

Vortex lattices. Superfluid 4He in a rotating bucket
spontaneously develops patterns of symmetrically
arranged vortices. Similar phenomena can be expected
when a dilute gas Bose condensate is forced to rotate.
Butts et al. [154] have calculated the vortex patterns
that will form as a response to forcing a BEC to rotate
with a predefined frequency Ω. The energy in the coro-
tating frame gets an additional contribution from the
centrifugal term Urot(r) = Utrap(r) – ΩLz , where Lz =
"Nlz , and lz = i(y∂x – x∂y) is the single-particle angular
momentum. If the rotation is slow, the energy ΩLz is too
small to force the condensate wavefunction to rotate. If
the rotation frequency is higher than a critical value Ωc ,
the time-averaged potential, Urot(r) eventually develops
a local maximum in the center (torus shaped potential).
For noninteracting gases, the critical frequency coin-
cides with the radial secular frequency, Ωc = ωr , and the
radial restoring force of the trap does not balance the
centrifugal force anymore, so that the atoms escape
from the trap. However, for superfluid gases the critical
frequency is reduced, Ωc < ωr . Between the rotation
frequencies Ω = Ωc and Ω = ωr , the lowest energy state
in the torus shaped potential is a vortex filament around
the center. At even higher rotation frequencies, one
might expect single vortices with a higher winding
number (more than 2π phase winding for a single path
around one vortex). However, single multiple-order
vortices in harmonic traps are always very unstable.
Instead, vortex lattices [154] are formed. For a given
trapping potential and mean-field interaction, the sym-
metry of the lattice and the number of vortices depend
on the rotation frequency Ω. Counterintuitively, the sin-
gle-particle angular momentum lz is not quantized.
Upon varying Ω , forbidden ranges of lz alternate with
allowed bands. The discontinuous transition from one

vortex pattern to another is a first-order phase transition
and spontaneously breaks the previous azimuthal sym-
metry to form another one. An upper limit for the rota-
tion speed is set by the balance of the centrifugal force
and the radial restoring force of the trap at Ω = ωr .

These vortex patterns have been observed in a recent
experiment, that employed the stirring method of rotat-
ing the trap [10]. Madison et al. produced a cigar-
shaped 87Rb condensate with N = 105 atoms in a clover-
leaf trap with ωz =2π × 12 Hz, ωr = 2π × 220 Hz. The
ratio of mean-field interaction to kinetic energy was

gn0/"ωz = /2ξ2 > 100. Along the symmetry axis but
slightly displaced from the center, they focused a far
red-detuned dipole-force laser beam in order to create a
weak anisotropy in the trapping potential. During
forced evaporation and while crossing the BEC phase
transition, this optical “spoon” is rotated around the
symmetry axis. Beyond a certain critical rotation fre-
quency, Ωc ≈ 2π × 150 Hz, they observed the formation
of a central vortex. At higher frequencies, they could
image vortex lattices with up to eleven vortices sym-
metrically arranged in the transversal plane (Fig. 12).
At stirring frequencies approaching the radial secular
frequency of the trap ωr , the BEC wavefunction got
more and more turbulent and finally vanished alto-
gether. After removing the optical spoon, the lifetime of
a single vortex was measured to be approximately one
second (the lifetime of the condensate being much
longer). The vortex decayed to the ground-state of the
unperturbed harmonic potential most likely by spiral-
ing out of the center. Vortex patterns were found to
decay by successively losing one vortex at a time.

Madison et al. probed the density distribution of the
vortices by absorption imaging. The diameter of the
dark core of a vortex in the unperturbed trap (no stirring
spoon) is set by the healing length and measures about
2ξ ≈ 0.4 µm. This size is too small for optical imaging.
However, after a 30 ms period of ballistic expansion
the core diameter reached 15 µm and could be probed
easily.

atrap
2

Fig. 12. Array of 7, 8, and 11 vortices in a Bose–Einstein condensate stirred by a laser beam. The absorption image was taken after
a 27 ms period of free expansion (courtesy of [148]).
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Angular momentum. Zambelli et al. [155] have
suggested a method for measuring the flow around a
vortex via the excitation of quadrupolar surface modes.
In an axisymmetric trap, the transversal quadrupole
modes can be linearly decomposed into two counterro-
tating modes with angular momentum ±2" and fre-
quencies ω± = ±ω. In a rotating BEC, the degeneracy of
the frequencies is lifted by an amount that corresponds
to the rotational energy of a single atom,

(4.4)

where r is the average radius of the orbit. This behavior
is known as Sagnac effect. Chevy et al. [149] per-
formed an experiment where they first stirred the BEC
and then excited the quadrupolar surface modes simi-
larly to the earlier experiment of Onofrio et al. [135].
They observed the quadrupolar oscillation in time-of-
flight measurements and noticed a continuous rotation
of the principal axis of the quadrupolar mode if vortices
had been excited. Also, being in the Thomas–Fermi
limit, they could infer r from TOF images and calculate
the angular momentum Lz of the rotating BEC from
Eq.  (4.4) as a function of the chosen stirring velocity.
They found Lz= 0 below the critical velocity. At the stir-
ring velocity Ωc , the angular momentum suddenly
jumped to Lz = " and gradually increased (in fractions
of ") up to Lz ≈ 3" as the stirring was further acceler-
ated. At stirring velocities approaching the radial trap
frequency ωr , the vortex pattern got turbulent and Lz

diminished again and finally vanished.
4.3.5. Matter-wave solitons. Solitons are localized

nonsingular solutions of any nonlinear wave equation
satisfying |ψ(r, t)| = |ψ(r – vt) |. Solitons are well
known to occur in nonlinear optical media, e.g., in opti-
cal fibers when the dispersion is counterbalanced by
self-phase modulation so that they propagate without

ω+ ω––
2Lz

mr2
---------,=

spreading. The Gross–Pitaevskii equation is another
example of a nonlinear wave equation that can exhibit
soliton-like solutions. Correspondingly, so called dark
solitons or kink-wise states, i.e., states with dynami-
cally stable density minima, are expected in conden-
sates with repulsive interactions. They have been pre-
dicted for one-dimensional BECs [156–159] and may
occur in higher dimensions, as well. In contrast to truly
topologically stabilized defect states like vortices, dark
solitons are pseudodefects, whose decay may be very
slow although they are topologically trivial. Due to the
greater motional freedom of their wavefunctions they
may be untwisted by complex deformations [160].
Matter-wave soliton-like states have first been observed
in superfluid 3He-B [161]. In dilute gases, their size is
expected to be on the order of the healing length which
typically corresponds to a few hundred nanometers.

Dum et al. [162] proposed to engineer dark solitons
in Bose condensates using adiabatic Raman-transfer,
and many other schemes have been suggested. Burger
et al. [163] and the NIST group at Gaithersburg [164]
recently successfully created and observed solitons.
Both groups employed a method based on the applica-
tion of an inhomogeneous matter-wave phase shift.
They created and magnetically confined a rubidium,
resp. sodium, condensate and irradiated half of the con-
densate with a far-off resonance laser beam pulse
(detuning ∆, Rabi frequency Ω , duration τ ! "/gn0)
thus advancing the phase of this half condensate by ϕ =
Ω2τ/4∆. When the phase shift was adjusted to be on the
order of π, a steep phase gradient developed at the
boundary plane driving the density distribution in the
condensate to adjust itself until a density minimum
formed along the plane. The density distribution of the
condensate was mapped by time-of-flight imaging at
various delays after application of the phase shifting
laser pulses (Fig. 13). Denschlag et al. additionally
used an interferometric technique based on Bragg dif-
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Fig. 13. Dark solitons in a Bose–Einstein condensate. The images (A to E) show experimental measurements, and the images (F to
J) are calculated density distributions for various times after a phase imprint of 1.5π on the top half of the condensate. A positive
density disturbance moved rapidly in the +x direction, and a dark soliton moved oppositely and significantly slower than the speed
of sound (reprinted with permission from [164]).
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fraction (Section 5.3.3) to monitor the phase distribu-
tion of the condensate. The observed density kink cor-
responds to the node of a topological dipole mode and
can also be interpreted as a one-dimensional dark soli-
ton on a finite background, where the kink and the
background move synchronously [140, 156, 159].
These states represent standing matter-waves for which
the trap serves as a cavity.

The steep phase gradient at the nodal plane exerts a
force that tries to enhance the gap, while the repulsive
interaction works to fill it. At zero temperature, this bal-
ance guarantees the dynamical stability of the soliton.
While a perfectly dark soliton should be stationary, the
experiments [163, 164] exhibited a propagation of the
density kink perpendicularly to the nodal plane. This
feature is a result of the finite contrast of the kink. How-
ever, the propagation velocity must always be inferior
to the local speed of sound,

(4.5)

where n is the condensate peak density and nsol the den-
sity at the bottom of the dark soliton [157, 158]. Figure 13
shows that the soliton develops a curvature as it propa-
gates. The reason for this is the decrease of the local

speed of sound, cs = , at the edge of the BEC
where the density gets smaller. A second reason is that
the density in the dip nsol tends to zero towards the edge.
In the presence of a thermal cloud, dissipation reduces
the contrast of the density kink and accelerates the soli-
ton until it reaches the speed of sound cs and finally
vanishes.

CHAPTER 5.
ATOM OPTICS WITH BOSE–EINSTEIN 

CONDENSATES

In the past decade, various methods and schemes of
laser cooling and trapping of atoms became powerful
tools in atom physics and quantum optics. In achieving
always lower temperatures and extreme densities, the
whole field moved to the boundaries of the new regime,
where coherent matter-wave interactions become dom-
inant. This development culminated in the experimen-
tal achievement of Bose–Einstein condensation. The
atoms confined on microscopic or macroscopic scales
at high phase space density are governed by collective
and quantum statistical effects. This opens up new per-
spectives for many-body studies in regimes, where
standard approximations cease to be valid. It is, for
example, particularly interesting to explore atomic
two–body interactions, which may play a role in coher-
ent matter-wave optics similar to the role played by
atom–photon interactions in quantum and nonlinear
optics. At the same time, the field of atom optics devel-
oped rapidly with the demonstration of atom optical
elements like atom mirrors, atom lenses and beamsplit-

v sol cs

nsol

n
--------,=

gn0/m

ters. These two fields are now being combined and
form the basis of the new emerging field of coherent
atom optics.

The atom laser is the matter-wave analogue of the
photon laser. It is a coherent atom source “pumped” by
an ultracold and dense ensemble, which is stimulated to
feed one mode of the atomic de Broglie field. A Bose
condensate trapped in the ground state of a confining
potential and fed from an evaporatively cooled thermal
cloud may already be understood as a rudimentary sta-
tionary pulsed atom laser. The trap plays the role of the
laser cavity. However, while lasers can oscillate in any
cavity mode, BECs generally condense in the ground
state of the trap. Similar to the invention of the laser in
the early sixties with all its fascinating scientific appli-
cations, coherent atom sources will open new areas of
fundamental physics and applications, in part still
unforeseen. These may include atom interferometry,
atom lithography, atom microscopy, atom holography,
atom sensoring or nanostructuring. Many applications
demand dense, bright and coherent sources of atoms in
order to exhaust their capabilities. In this respect, atom
lasers are much superior to thermal atomic beams.
While a typical thermal beam has about 10–12 atoms per
mode, a Bose-condensed mode contains @1 atoms. The
recent demonstrations of the experimental feasibility of
Bose–Einstein condensation [3–6, 110, 165] boosted
theoretical and experimental work and accelerated the
development of this whole field.

As an example, atomic holography may become
practical with the availability of spatially coherent mat-
ter-wave sources. Microfabricated holograms may have
typical dimensions of a few 100 µm and minimum fea-
ture sizes on the order of 1 µm. Exploiting the repulsive
self interaction, one may let a BEC expand, pass it
through a transmission hologram computed judiciously
to produce the desired diffraction pattern, and refocus
it. Small chromatic aberration is due to small velocity
spread. The resolution is limited on one hand by the
atomic de Broglie wavelength, on the other hand by the
size of the smallest structures of the hologram [28, 166,
167] which can be made as small as 10 nm. Another
important quantity, the resolving power, is limited by
the number of holes in the hologram and the velocity
spread of the atoms. While the reduction of the velocity
spread by spatial filtering of an incoherent atomic beam
is only possible at the cost of huge loss in intensity, the
velocity spread of coherent matter-waves is at its quan-
tum limits.

The present chapter reviews recent experimental
work on coherent atom optics. In order to place our
topic into the right context, we start with a very brief
overview of conventional atom optics. We discuss the
impact of the advent of BEC on the field of atom optics
in the Sections 5.2 and 5.3, on the basis of recent real-
izations of atom lasers and interferometers. Section 5.4
is devoted to experiments in nonlinear atom optics,
Section 5.5 relates the recent demonstration of a coher-
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ent matter-wave amplifier and gives a brief outlook on
the evolution of the field of quantum optics with atoms. 

5.1. Conventional Atom Optics

The far-reaching analogy of light waves and atomic
beams is a result of the particle-wave duality and thus
of the quantum nature of both light and matter. It moti-
vated de Broglie in 1924 to assign a wavelength to
material particles that depends on the particle’s
momentum:

(5.1)

Contrary to photons [168], there is no doubt about the
fact that atoms are (also) particles. Whether an atom
rather behaves like a particle or a wave depends on the
specific experimental situation. In interferometers,
atoms interfere with themselves if their de Broglie
wavelength is coherently split and recombined. Atoms
are capable of interfering with one another if their de
Broglie wavelength is larger than their distance. This
requires high densities and very low temperatures (at
least in some dimensions). In fact, what matters is not
the small kinetic energy of the atoms, but a small veloc-
ity spread, i.e., a high phase-space density. At phase-
space densities so high that the atomic de Broglie
waves get into contact, quantum statistical effects start
to influence the atomic dynamics, i.e., Bosons behave
differently from Fermions.

Analogously to the distinction between classical
optics and laser optics, we may divide the field of atom
optics into conventional single-atom optics with atoms
that are not mutually coherent and atom optics with
Bose-condensed atoms. In conventional atom interfer-
ometers, one takes advantage of the interference of
every atom with itself, and most atom optical devices
do not rely on the mutual coherence of the atoms. On
the other hand, nonlinear interactions between the
atoms make the dynamics of coherent matter-waves
interacting with atom optical devices much more com-
plex than single-atom optics. Atom optics with conden-
sates offers the advantage of large de Broglie wave
amplitudes and ultra-long de Broglie wavelengths. In
fact, the coherence length of a BEC is equal to its phys-
ical size. This has obviously an important impact on the
sensitivity and resolution of atom optical devices, as we
shall soon see.

We will not go into details about conventional (sin-
gle-particle) atom optics here, since there are many
excellent topical reviews [169–172]. However, for the
sake of completeness, we list below the most important
atom optical devices that have been developed and used
in experiments.

5.1.1. Atom optical devices. In analogy to the
manipulation of light beams by optical elements, atom-
optical components have been developed for manipu-
lating atomic matter-waves. The basic equipment of an

λ p
"
p
---.=

optics lab consists of cavities, lenses, refractive, disper-
sive and birefringent media, mirrors, beamsplitters,
transmission and reflection gratings, fibers, acousto-
optic modulators [169, 173]. The matter-wave counter-
parts of all those elements have been realized today.
Most elements exploit the interaction of the mechanical
degrees of freedom of the atoms with light. Note that
the atom optical devices only manipulate the atomic
field density and the first order coherence.

Atomic beams have a long history of applications in
ultra-high precision experiments, e.g., in atomic clocks
[174]. Since the development of laser cooling tech-
niques, atomic beam slowing and cooling has proven a
powerful source for many applications [64, 65]. Today,
atomic beams are often used to load magnetic, optical,
and magneto-optical traps for atoms.

Traps for atoms are to some extent analogous to
optical cavities for light. In second quantization the
radiation field inside a cavity is described by harmonic
oscillators, just like the motion of atoms confined in a
harmonic trap [175]. At very low temperatures, kBT <
\ωtrap , the effects of quantized motion can be directly
observed [74, 176].

Lenses for atomic waves may be realized by exploit-
ing the radiation forces of laser beams, or if the atoms
are moving within a waveguide, by arranging for spa-
tial or temporal variations of the fields [177–179]. Mir-
rors for atoms can be made by a far blue-detuned eva-
nescent wave emerging from the surface of a glass sub-
strate [180]. Aspect and his group let atoms bounce in the
gravitational field on a curved and (for matter-waves)
achromatic mirror more than twenty times [181]. This is
a rudiment for a gravitational cavity for atoms, where
many atomic bosons could occupy one cavity mode in
analogy to optical resonators. Another option for
atomic mirrors is a microfabricated magnetic surface
that repels the atoms approaching the strongly inhomo-
geneous magnetic surface field [182]. Already, falling
Bose–Einstein condensates have been reflected from a
far blue-detuned sheet of light [183]. Gratings are
microfabricated [184] or based on standing light waves.
They are at the heart of atom interferometers and
already permitted the development of high precision
applications and experiments (atomic gyroscopes, mea-
surement of the gravitational acceleration g). Waveguides
are the atom-optical counterpart of fibers. Forces that
guide the atoms can be exerted by electric or magnetic
fields (single wire [185], quadrupolar waveguides
[186]), or by light beams via the dipole interaction. Pos-
sible geometries are evanescent wave hollow fibers
[187, 188] or blue-detuned hollow-core laser beams
[189]. Recently, Bose–Einstein condensates have been
transferred to such hollow-core laser beam waveguides
[190]. Inhomogeneous magnetic fields (e.g., magnetic
trapping fields) act as Stern–Gerlach filters and can be
thought of as matter-wave polarizers.

De Broglie wave frequency shifters are the matter-
wave analogue of acousto-optical modulators (AOM).
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They have been implemented in conventional atom
interferometers [191] and more recently in coherent
matter-wave optics [20]. The matter-wave experiment
will be discussed in Section 5.3.3. Finally, we want to
mention atom holography [167], atom lithography
[177] and atom microscopy [192] as examples for the
successful application of matter-wave optics. It is very
likely that the availability of coherent matter-waves
will have a strong impact on these fields, too.

 

5.1.2. Atom interferometers.

 

 Atom interferometers
split and recombine a single atom or an atomic ensem-
ble in time or in space (or both). If the temporal or spa-
tial evolution is coherent, we observe interference phe-
nomena. In many experiments one attempts to produce
large splittings of the atomic de Broglie wave, but even
a motionless single particle can act as an interferometer
and produce Rabi- or even Ramsey fringes [193].
Recoil effects in the interaction of atoms with light
become important when the atoms are so cold that the
atomic momentum verges on the wavevector of the
photons, 

 

p

 

 

 

≈

 

 

 

"

 

k

 

. Each absorbed photon adds a quan-
tized amount of momentum, 

 

"

 

k

 

, to the motion. The
application of light-induced 

 

π

 

/2 pulses to the atoms
splits the de Broglie wave and entangles the internal
and motional degrees of freedom. Variations of this
idea led to the development of Ramsey-Bordé interfer-
ometers and atomic fountains [194].

 

5.2. Atom Laser

 

Probably the most striking feature of Bose-con-
densed atoms is their mutual (first-order) coherence
spectacularly demonstrated by Andrews 

 

et al.

 

 [195]. In
quantum optics, the epitome of a coherent light source
is the laser, and we may ask, whether there is a matter-
wave analogon, and what the relationship between such
an 

 

atom laser

 

 and a Bose condensate would be. In fact,
we may already consider a BEC to be a rudimentary
stationary atom laser pulse, the trapping potential tak-
ing over the role of the cavity. The atom laser, in the
sense of a coherent atomic wave emitting device, must
satisfy a few more requirements. Generally, we ask for
a continuously working output coupler for a coherent
atomic beam and an irreversible pump process that
refills the atom-lasing medium. Many theories on atom
lasers or bosers have been developed [196–204], and
we will not explain them here. Instead, along the lines
set by the analogy between optical and conventional
atom optical devices, we will briefly describe the exper-
imental progress that has been made on the way
towards an atom laser that deserves this name.

 

5.2.1. Bosonic stimulation and evaporation.

 

 The
gain mechanism for optical lasers can be understood as
photons in a laser mode stimulating atoms to emit more
photons into the same laser mode. The atom laser
works similarly. The atoms trapped in a potential con-
stitute a thermal reservoir. Binary collisions redistrib-
ute the atoms over the energy states. If a state already
contains a population of 

 

N

 

 atoms, the Bose quantum

statistics encourages an atom involved in a collision
process to join this state. The bosonic enhancement fac-
tor is proportional to 

 

N

 

 + 1. Bose condensation is nec-
essarily a result of bosonic stimulation. However, the
dynamics and the time scale of the formation process
were controversially discussed, until recent experi-
ments performed at the MIT clearly demonstrated that
BECs form at finite times and develop long-range
order.

In order to directly observe bosonic stimulation,
Miesner 

 

et al.

 

 [205] evaporatively cooled 2 

 

×

 

 10

 

7

 

 mag-
netically trapped atoms close to the condensation
threshold at 1.5 

 

µ

 

K. The final temperature was set by
the final 

 

rf

 

 frequency of the evaporation ramp. Then
they suddenly decreased the 

 

rf

 

 frequency by 200 kHz,
thus initiating a fast truncation of the hot tail of the
energy distribution. The quick subsequent relaxation
produced an oversaturated “thermal” cloud, and the
nucleation process and exponential growth of the BEC
within the thermal cloud was observed time-resolved
by nondestructive dispersive imaging of the atomic
cloud (see Section 3.3.2).

Figure 14 shows the growth of the condensate atom
numbers towards equilibrium starting with various con-
densed atom numbers at the time of the fast 

 

rf

 

 trunca-
tion. If no condensate was present, the growth started
slowly and increased exponentially until thermal equi-
librium was reached. The exponential acceleration of
the growth is a clear indication of bosonic stimulation
and is in contrast to pure thermal relaxation, which
slows down exponentially. For the experimental condi-
tions (the trap secular frequencies were 

 

ω

 

r

 

 = 2

 

π

 

 

 

×

 

 83 Hz
and 

 

ω

 

z

 

 = 2

 

π

 

 

 

×

 

 18 Hz) the formation of BEC took about
40 ms, while elastic collisions happened on the time
scale of 2 ms. The large collision rate ensured that dur-
ing the process of forced radio-frequency evaporation
(Section 3.1.4) the atomic sample is always held in
thermal equilibrium so that, even while crossing the
phase transition to BEC, the condensed fraction of
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Fig. 14.

 

 Bosonic stimulation. The curves show the growth of
the condensate towards thermal equilibrium after a sudden
initial desequilibration for various initial numbers of con-
densed atoms (courtesy of [205]).
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atoms reflects the instantaneous temperature rather
than the dynamics of condensate formation.

Other experiments have confirmed the role of
bosonic stimulation and matter-wave amplification.
They will be discussed in Sections 5.4.4 and 5.5.2.

 

5.2.2. Coherence and interference.

 

 First-order
coherence and long-range order are necessary prerequi-
sites for the assignment of a single global phase to a
condensate. The coherence properties of BECs and the
possibility to measure a condensate’s phase have in the
past been questioned. The phase of a BEC is certainly
not observable by itself, but only the 

 

relative phase

 

 of
two condensates. In superconductors, phase differences
between the order parameters of coupled systems are
measured through Josephson-oscillations. For dilute
gases, the first-order coherence and long-range order of
the condensate wavefunction have been demonstrated
in a remarkable experiment by observing matter-wave
interference fringes generated by two overlapping con-
densates [195].

Andrews 

 

et al.

 

 [195] produced a cigar-shaped BEC
made of 5 

 

×

 

 10

 

6

 

 atoms and no apparent thermal cloud
in a cloverleaf trap with secular frequencies 

 

ω

 

r

 

 

 

≈

 

140

 

ω

 

z

 

 

 

≈

 

 2

 

π

 

 

 

×

 

 243 Hz. They subsequently cut it into two
parts distributed along the weak axis with a 12 

 

µ

 

m thin
laser light sheet (Fig. 15). The laser light was blue-
detuned by 75 nm below the 

 

D

 

2 resonance, so that heat-
ing due to Raleigh scattering could be neglected. The
two parts of the condensate were then released from the
trap by suddenly removing all magnetic fields and laser
beams. During free expansion, the condensates pro-

gressively overlapped and formed interference fringes.
After 40 ms time-of-flight, the interference patterns
were probed by absorption imaging (Section 3.3.1).
Standard absorption techniques only sense the inte-
grated column density and blur the images of the
slightly curved interference patterns (Fig. 16) [206].
Andrews 

 

et al.

 

 solved this problem by only probing
atoms within a 100 

 

µ

 

m thin slice orthogonal to the
imaging direction. This was achieved by selectively
pumping the atoms within this slice to the 

 

F

 

 = 2 hyper-
fine level of the groundstate which in turn is resonant to
the probing transition.

Two condensates interpenetrating at a velocity 

 

v

 

exhibit interference fringes with a periodicity that cor-
responds to the relative de Broglie wavelength 

 

λ

 

 =

 

h

 

/

 

m

 

v

 

, where 

 

v

 

 = 

 

d

 

/

 

t

 

. Here, 

 

t

 

 is the time-of-flight and 

 

d

 

is the initial separation of the BECs assumed to be ideal
point sources, but the finite extension makes only small
modifications. The interference patterns observed in
experiment [195] depended on the initial separation of
the condensates, on the time-of-flight and on the way
they were released from the trap (pulsed or cw). The
interference fringe contrast was found to be between 50
and 100%. The interference fringes periodicity was on
the order of a few micrometers, which corresponds to

 

Trapped split BECs

Interfering BECs
after 40 ms TOF

Probe laser

CCD

Optical pumping
beam

 

Fig. 15.

 

 Scheme of the setup for interference observation.
A cigar-shaped condensate is built in a cloverleaf trap, it is
split into two parts with a blue-detuned far-off resonance
laser beam, suddenly released from the trap and partially
illuminated by a laser light sheet. The interference patterns
are recorded by absorption imaging.

 

Fig. 16.

 

 Interference patterns of two released condensates
recorded with the setup sketched in Fig. 15 for three differ-
ent values of the height of the potential barrier (i.e., intensity
of the laser light sheet that separates the trapped conden-
sates). The three pictures on the right hand side are calcu-
lated patterns [206] (courtesy of [115]).
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atoms having a kinetic energy much lower than the
mean-field energy and the zero-point energy of the har-
monic trap. The reason for this is the large anisotropy
of the trapping potential: The released condensates
expand predominantly in radial direction, but are very
slow in axial direction.

The ability of freely expanding condensates to inter-
fere proves that there are no random local phase shifts
during ballistic expansion, and that the BECs preserve
their long range order. The homogeneity of the intrinsic
phase of trapped BECs has recently been confirmed in
other experiments [137, 207, 208] (Section 5.4.2) based
on the technique of Bragg diffraction (Section 5.3.3).
Simsarian 

 

et al.

 

 [209] measured the evolution of the
local phase of released condensates and found that,
under the influence of mean-field repulsion, the phase
develops a nonuniform profile during the ballistic
expansion.

In the original interference experiment [195], the
magnetic trapping fields created in conjunction with the
laser light sheet a 

 

double-well potential

 

. However, the
potential well was so large, that it prevented tunneling
between the condensates and decoupled their dynam-
ics. Different atom numbers in the condensates, imper-
fections in the exact symmetry of the two traps and
technical noise caused the condensate phases to evolve
independently and asynchronously. However, it might
be possible in future experiments (e.g., by employing a
very narrow light sheet) to allow for quantum tunneling
and, ultimately, to observe Josephson oscillation
between two condensates (Section 5.3.2).

The degree of coherence (i.e., the amount of fluctu-
ations in the field amplitudes) is measured by the first-
order correlation function. Similar to optical double-slit
experiments, the observed matter-wave interference
only indicates first-order coherence of the interfering
beams. However, signatures for higher-order short
range coherence of condensates have been found in
other experiments: The second-order correlation func-
tion, which is a measure of the amount of fluctuations
in the field intensities, has been estimated from mea-
surements of the release energy of BECs [210]. The
third-order correlation function revealed itself by com-
parison of the three-body recombination rates of con-
densed and thermal clouds [211].

 

5.2.3. Output coupling.

 

 Coherent output cou-
pling from Bose condensates out of magnetic traps is
generally achieved by radiatively coupling trapped
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coherent splitting of a photon Fock state by an optical
beamsplitter. The inhomogeneous trapping potential
acts like a Stern–Gerlach filter and ejects the untrapped
atoms. We have, however, seen in the previous section,
that the release process preserves the intrinsic coher-
ence of the released BEC, which propagates according
to a single-mode wave equation. The coupling between
trapped and untrapped condensates therefore remains
truly coherent.

Coherent output coupling of parts of condensates
out of magnetic traps has been realized in several dif-
ferent ways. Radiofrequency radiation was used for
pulsed [14, 18] and continuous [16] output coupling.
Laser beams in Raman configuration have been used to
create a quasi-continuous, well-collimated coherent
atomic beam [17], and a mode-locked system has been
demonstrated [15]. In this section, we will briefly dis-
cuss the experiment of Mewes et al. [14].

The first output coupling experiment was performed
by Mewes et al. in a sodium condensate with 5 ×
106 atoms and no discernible thermal fraction confined
in a cigar-shaped cloverleaf trap with secular frequen-
cies ωr ≈ 20ωz ≈ 2π × 400 Hz. The magnetic trapping
field had a bias of B0 = 1.1 G, which removed the
degeneracy of the trapped mF = –1 and untrapped
mF = 0, 1 Zeeman states within the lower hyperfine
multiplet F = 1. Mewes et al. coupled them via
radiofrequency radiation. With time, the system
evolved into a coherent superposition of Zeeman states
[b–1|–1〉  + b0|0〉  + b1|1〉]N, where b–1 = cos2Ωτ/2 and b0 =

i sinΩτ and b1 = –sin2Ωτ/2. Atoms in the mF = 1
state were quickly repelled from the trap center by the
magnetic field, while atoms in the mF = 0 state were
slowly accelerated by gravity. The spatial dependence
of the Zeeman shift in the magnetic trap inhomoge-
neously broadened the radiofrequency resonance and
made the output coupling efficiency spatially depen-
dent. This problem was solved by either sweeping the
radiofrequency through the resonance or by applying
pulses so short, that the Fourier broadening dominated
the inhomogeneous broadening. Repetitive application
of 5 µs long pulses gave rise to the absorption images
shown in Fig. 17. By controlling the amplitude of the
radiofrequency, the output coupling could be adjusted
between 0 and 100%. In a subsequent experiment, it
was verified that the output coupling preserves the
coherence by observing interference fringes between
outcoupled pulses [195]. This also shows that this out-
put coupler may be understood as the analogue of a
pulsed mode-locked laser.

It is also important to consider collisions between
the output coupled atoms and the atoms remaining in
the condensate. Those collisions represent losses for

N
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the output mode and may even lead to bosonically fed
momentum sidemodes (Section 5.4.4). A low conden-
sate density is advantageous for reducing the atomic
scattering. On the other hand, the BEC gets superfluid
at high densities thus allowing the dissipationless
motion of the output coupled atoms through the BEC.
We remind here of the study of the motion of impurity
atoms through a condensate by Chikkatur et al. [145].

Within the small region of space occupied by the
trapped condensate, the magnetic field is harmonic to

first order except for a tiny deformation at the bottom
side due to gravity. For the experiment described above,
the deformation corresponded to about 10 mG mag-
netic field variation. Precise tuning of the radiofre-
quency to this value results in a spout through which
slow atoms may continuously escape, thus generating
continuous and precisely localized output coupling. Of
course this method requires very stable magnetic fields.
This method has been used by [16], to create a quasi-
continuous atom laser beam.

We have seen, that atom lasers can be built including
all features that make up an optical laser. We can gen-
erate coherent matter-waves taking atoms from a ther-
mal reservoir by irreversible bosonically stimulated
scattering, and we can couple (quasi-)continuous
coherent atomic beams out of a single mode of the trap.
However, the mode only contains a finite number of
condensed atoms. In order to realize a true cw atom
laser, an incoherent pump mechanism that would con-
tinuously refill the BEC being depleted by output cou-
pling still remains to be developed.

5.3. Atom Interferometry

The most obvious use of an atom laser is within an
atom interferometer. We already saw in Section 5.2.2
that we get matter-wave interference by just splitting
and recombining a Bose condensate. Andrews’ experi-
ment [195] thus realizes an external degree of freedom
coherent matter-wave interferometer, where the atoms
in the interferometer arms are distinguished by their
being at different locations. It is also possible to build
an interferometer based on splitting the BEC in
momentum space as we will see in Section 5.3.3 [20].
Alternatively, we may consider BEC atom interferom-
eters, where the interfering components are in different
internal states (Zeeman-states [8], hyperfine states [7],
dressed states [212]). We will briefly discuss an exper-
imental implementation of an internal state BEC inter-
ferometer in the following section.

5.3.1. Double species interferometer and phase
measurements. The possibility to coherently couple
two-species Bose condensates, i.e., two BECs that are
distinguishable by their internal degrees of freedom,
suggests their application on an internal-state time-
domain atom interferometer [193]. The phases of the
two internal states |±〉 evolve according to their respec-
tive chemical potential, ϕ|±〉(t) = µ|±〉t. The phases are
not observable, but their difference ∆ϕ(t) can be mea-
sured by Ramsey interferometry. The idea of a Ramsey
interferometer is the following: First, a coherent super-
position of the internal states is created by coupling the
two internal states for a short time. The two-level Bloch
vector then starts to precess according to the difference
in the chemical potentials. After a while, the internal
states are mixed again, and the Bloch vector is pro-
jected onto the internal state energy axis. The popula-
tion distribution between the internal states depends on
the accumulated precession angle. Thus, the Ramsey

0 1Density scale (arbitrary units)

Fig. 17. Output coupling of parts of a BEC by irradiation of
radiofrequency pulses (courtesy of [14]).
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method of separated oscillatory fields converts the
phase measurement into a measurement of populations,
which can easily be carried out experimentally.

Hall et al. [19] started with a single |1, –1〉  BEC hav-
ing a well-defined global phase. A first two-photon
microwave-radiofrequency pulse prepared a coherent
superposition of |1, –1〉  and |2, 1〉  BECs. With a reso-
nant π/2 pulse, they got 50% population in both levels.
The converted and the remaining atoms were not
immediately in the stationary ground-states of their
respective trapping potentials, because they had to
adjust the spatial shape of their condensate wavefunc-
tion to the modified conditions. The smaller partial
atom numbers, a slight change of the scattering length
and of the trapping potentials for the atoms turned into
|2, 1〉  altered the chemical potentials for both states. So,
it took some time for the two BECs to relax to their
respective ground states. During a time T, the two-level
Bloch vector freely precessed, and the BECs accumu-
lated a differential phase proportional to the difference
in their chemical potentials. A second π/2 pulse now
remixed the components. Finally, the populations in
|1, –1〉  and |2, 1〉  were separately probed via time-of-
flight imaging.

The TOP trap offers the possibility to precisely tune
the relative displacement of the two clouds. The inter-
penetration can be made considerable and typically
amounts to 20%. The overlap region constitutes the
interfering portion of the BEC interferometer, and its
size determines the fringe visibility. A simple model
describes the fringe contrast as a function of the local
densities . The final population of the |2, 1〉  state
after completion of the Ramsey sequence reads [19]:

(0.1)

Ramsey fringes were recorded [19] by repeating the
whole sequence of BEC creation, Ramsey interferome-
try and destructive imaging with different free preces-
sion times T. In Eq. (5.2), we assumed an inhomoge-
neous and time-dependent evolution of the local rela-
tive phase at a rate proportional to the local difference
in chemical potentials ∆µ(r, t). This assumption
accounts for the complicated transient relaxation of the
two partial condensates into their respective ground-
states. The transients should lead to phase diffusion in
the spatial average and engender strong decoherence.
However, in experiment [19] the fringes turned out to
be surprisingly clear and reproducible, thus indicating
lower phase diffusion than naively expected. The relax-
ation typically lasted 45 ms, but even after T = 100 ms
the double BEC system remembered the initial phases
and could interfere. Furthermore, ∆µ(r, t) depends on
the numbers of atoms in the upper and lower BECs and
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therefore on the total condensed atom numbers. The
high fringe visibility indicates a very good experimen-
tal reproducibility.

Note that phase and atomnumber are noncommut-
ing observables. Measuring the difference in atom-
numbers of two coupled Bose condensates destroys the
relative coherence and decouples the BECs. Internal
coherence of a BEC means predictable phase between
any two atoms. Atomnumber measurements yield BEC
number states, but of course this does not diminish the
inherent coherence of the BEC.

5.3.2. Quantum transport and Josephson tunnel-
ing. When two superconductors are brought into con-
tact, a dc voltage that is applied to a tunnel junction
between the superconductors generates an oscillating
current proportional to the electric potential difference.
This phenomenon, called Josephson effect [213], is a
general feature of coupled macroscopic quantum sys-
tems and can be observed e.g., with gaseous Bose con-
densates confined in a double-well potential. Here, the
oscillating quantum current is proportional to the dif-
ference in chemical potentials of the BECs.

Anderson et al. [15] have directly observed another
manifestation of Josephson tunneling. They loaded a
Bose condensate into a vertical standing light wave.
Accelerated by gravity, the BEC tunneled from antin-
ode to antinode. Since the tunneling process was coher-
ent, the partial BECs quasi-trapped in the antinodes
were phase-locked and interfered. This feature is in
close analogy to mode-locked lasers, so that the tunnel
array can also be considered a mode-locked atom laser.

Another example for coherent matter-wave tunnel-
ing is the experiment by Stamper-Kurn et al. [126] on
spinor BECs trapped in a focused far-detuned laser
beam (Section 4.2.2). In a weak magnetic bias field, the
BEC was transferred into a superposition of the spinor
components |F, mF〉  = |1, 1〉  and |1, 0〉 , which were then
separated with a Stern-Gerlach type magnetic field gra-
dient and formed spin domains. Then the magnetic field
gradient was reversed, thus generating a force in the
opposite direction. Since the Zeeman components are
immiscible, the domains repel each other. The energy
barrier is higher than the chemical potential of the
domains. This means that the domains are metastable
against decay into their respective equilibrium posi-
tions. The experiment [126] observed quantum tunnel-
ing of the spinor components through each other and
measured the tunneling rate.

5.3.3. Bragg diffraction. We now turn our attention
again to the external degrees of freedom of the Bose-
condensed atoms and take a closer look at the interac-
tion of their center-of-mass motion with light. We con-
sider two laser beams with wavenumbers kω = ω/c and
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kω + ∆ω enclosing an angle ϑ  (Fig. 18). The light field
amplitude is described by

(0.2)

where we defined q ≡ "kω – "kω + ∆ω. The time-average
over an oscillation period yields the light intensity

(0.3)

which describes a one-dimensional light grating mov-
ing in the direction of q with a velocity that depends on
∆ω. A useful approximation for the momentum transfer
at small ∆ω is:

(0.4)

The interaction process can be understood in two
ways. In position space it may be interpreted as Bragg
scattering, i.e., stimulated Raleigh scattering of the
atomic de Broglie wave at the optical grating induced
by the standing wave and subsequent interference of
the phase-modulated de Broglie sidemodes. Alterna-
tively, it can be interpreted in momentum space as
Compton scattering, i.e., stimulated Raman scattering
between two different motional states of the atoms. The
recently observed Recoil-Induced Resonances (RIR)
[214] are another manifestation of the same process.

Compton picture. In the Compton picture, the
atoms being in the standing wave light field may absorb
photons from any of the two laser modes and be stimu-
lated to reemit the photons into the modes. Let us

E r t,( ) E0 kω r⋅ ωt–( )cos[=

+ kω ∆ω+ r⋅ ω ∆ω+( )t–( )cos ]

≈ E0 kω r⋅ wt–( ) 1
2
---q r⋅ 1

2
---∆ωt– 

  ,coscos

I r t,( ) I0 1 q r⋅ ∆ωt–( )cos+[ ] ,=

q 2"kω ϑ /2.sin≈

assume that an atom with momentum pi first absorbs a
photon of frequency ω from the laser beam kω and is
then stimulated by the laser beam kω + ∆ω to emit a pho-
ton of frequency ω + ∆ω and to acquire the final
momentum pf (Fig. 18). Because this is a two-photon
process, its amplitude is proportional to the square of
the light field amplitude, and thus to the light intensity:

(0.5)

The momentum q = pf – pi and the energy "∆ω =

/2m – /2m are transferred to the atom, so that the
atom must follow the Bragg condition:

(0.6)

The Bragg condition (5.7) can also be fulfilled by
higher-order Raman scattering processes, as we can see
by substituting q  nq, where 2n is the number of
absorbed and reemitted photons. This general case is
depicted in Fig. 18 for pi = 0.

Bragg picture. In order to explain the scattering
process in the Bragg picture, we choose our reference
frame so that kω = –kω + ∆ω in Eq. (5.3). In this moving
frame, the standing wave amplitude can be written as
E(z, t) = 2E0coskωzsinωt. The (single-photon) Rabi fre-
quency Ω generated by a single travelling wave laser
beam has been introduced in Eq. (3.4). For large red-
detuned laser frequencies, |∆| @ Ω , the standing wave
creates a light shift modulation described by

(0.7)

where U0 = "Ω2/∆ according to Eq. (3.9). Conse-
quently, the condensate matter-wave develops a spatial
phase modulation according to:

(0.8)

The condensate wavefunction evolves into a superposi-
tion of sidemodes, which are just the diffraction orders
of the Bragg scattering and whose strengths are given
by the Bessel functions In . The diffraction efficiency
increases with laser intensity and with time.

The above description neglects the atomic motion
during the interaction with the standing wave. This thin
grating approximation can be satisfied in experiment
by irradiating the standing wave only for very short
times. The time scale is set by the oscillation period of
the atoms in the optical potential valleys generated by
the standing wave via the dipole force interaction. At
the locations of the antinodes, we may harmonically

HCompton r t,( ) I r t,( ) p f| 〉 pi〈 |
pi

∑ c.c.+∼

p f
2 pi

2

"∆ω q2

2m
-------

pi q⋅
m

------------.+=

U z( ) U0 kωz,cos
2

=

ψ z t,( ) ψ0 z( ) i" 1– U z( )t[ ]exp=

=  ψ0 z( ) In
2

U0t/2"( ) 2πinkωz( ).exp
n

∑

kω

pi

q

pf

kω +∆ω

ε
ε = p2/2m

"∆2

∆ε

p

ϑ

nq
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.

"∆3

"∆2n – 1

"∆1

Fig. 18. Bragg scattering for matter-waves. The figure on
the left shows the geometric arrangement used in the exper-
iments [20, 137, 138]. Short pulses of Raman beams enclos-
ing the angle ϑ  and detuned by ∆ω from one another are
shone into the BEC. The figure in the right shows the para-
bolic dispersion relation, which strictly holds only in the
limit of negligible mean-field interaction.
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approximate the potential and introduce the secular fre-

quencies ωopt by  = U0. The thin grating

approximation holds for laser pulse durations τ !
2π/ωopt . For longer pulse durations, in the thick grating
limit, the atoms perform on average several oscillations
in the optical potential during the interaction time. This
causes periodic focusing (decollimation) and defocus-
ing (collimation), which manifests itself in a oscillating
Bragg diffraction efficiency.

Bragg diffraction of Bose condensates was first
experimentally observed by Kozuma et al. [20] in the
thin grating limit. They briefly irradiated a standing
wave into a trapped Bose condensate, then released the
BEC from the trap and recorded the momentum distri-
bution with standard time-of-flight imaging. They
observed a splitting of the condensate wavefunction
into the Bragg diffracted modes. The efficiency of the
Bragg diffraction could be made as high as 100%. By
variation of the relative detuning ∆ω, the diffraction
orders could be selected. Subsequent experiments also
investigated the thick grating limit [215], by applying
the standing wave pulse to released condensates and
arranging for large secular frequencies ωopt .

The BEC Bragg scattering technique described
above displays many similarities with acousto-optical
modulators (AOMs), which are commonly used in laser
optics. However, while AOMs deflect photons passing
through the interaction zone, the matter-wave Bragg
scattering described here is a time-domain process.
This diffraction method constitutes an important atom
optical device that will certainly prove a powerful tool
in many applications. It has already been used to excite
phonons in a controlled way (Section 5.4.2) and to
study the intrinsic phase of a condensate [137, 207]. In
the reference [207], small condensate replica sequen-
tially generated from a large BEC by coherent Bragg
diffraction interfered with each other and yielded infor-
mation about intrinsic phase variations of the BEC. In
[216], the Bragg diffraction scheme has been extended
to demonstrate a time domain matter-wave analogue of
the Talbot effect. And in [209], a Bragg diffraction
interferometer has been used to map the autocorrelation
function of a BEC and to image its phase evolving in
time.

5.4. Nonlinear Atom Optics

In classical nonlinear optics the interaction between
matter (e.g., dilute gases) and light is described by
Maxwell’s equations:

(0.9)

The electromagnetic field E creates a macroscopic
polarization P, which in turn acts back on the field via

m
2
---- ωopt

2 kω
2

P r t,( ) χ E( )E r t,( ) χ 1( ) E⋅ χ 3( ) : EEE …++= =

E r t,( )
4π
c

------ Ṗ̇ r t,( ).=

hE. Higher order processes like self-focusing, second
harmonic generation, four-wave mixing, etc. are
described by the nonlinear susceptibility χ(3). These
processes require the presence of a nonlinear medium,
because the polarizability of the vacuum itself is pretty
small. For visible wavelength the photon-photon scat-
tering cross section is well approximated by

45−2(973/5)(α4/π)("8ω6/ c14), which is only on the
order of 10–63 cm2 [217] and very difficult to reach even
with high intensity lasers. In contrast to this, the scatter-
ing cross section for shapeless two-body collisions in
ultracold sodium gases is on the order of 2 × 10–12 cm2,
so that two-body collisions are frequent processes at
currently available densities and temperatures.

5.4.1. Self-defocusing. Two-body collisions play a
role in coherent matter-wave optics which is very sim-
ilar to that of the nonlinear susceptibility in quantum
optics. Within the mean-field theory, the groundstate
wavefunction of the condensate is described by the
nonlinear Schrödinger equation:

(0.10)

where g ≡ 4π"2a/m. The nonlinear term describes the
condensate self-interaction and is analogous to the third
order contribution to the polarization in the nonlinear
Maxwell equations (5.10). If the atomic interaction is
repulsive, the nonlinear term causes the condensate to
expand as far as the trapping potential permits. This
behavior is analogous to the nonlinear optical self-
defocusing in local Kerr media with instantaneous
response. For large condensates, the self-interaction
can be so overwhelming, that the kinetic energy may be
neglected (at least in the center of the trap, where the
density is highest). This approximation defines the so-
called Thomas–Fermi limit.

5.4.2. Dispersion. The nonlinear mean-field inter-
action in a weakly interacting condensate is at the ori-
gin of the phenomenon of dispersion, i.e., the de Bro-
glie wavelength of a single atom with a given momen-
tum p inside the condensate depends on the local
density. For homogeneous condensates, the dispersion
relation (2.50) can easily be derived from the semiclas-
sical Bogolubov equations (Section 2.6). In the Tho-
mas–Fermi limit, the region inside the condensate has
a nearly homogeneous density, n(r) ≈ n0, so that the
Bogolubov dispersion describes the excitation spec-
trum quite well. For low excitation energies, εrec(p) ≡
p2/2m ! gn0, the spectrum is phonon-like (quasi-parti-
cle-like):

(0.11)

The excitation energy then depends linearly on the
momentum, and density perturbations travel without
spreading inside the condensate at the speed cs of the

me
8

"
2–

2m
--------∆ Utrap r( ) g ψ r t,( ) 2+ + ψ r t,( ) = µψ r t,( ),

εphon p( ) csp, where cs gn0/m.= =
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Bogolubov 0th sound. In contrast, for high energy exci-
tations, p2/2m @ gn0, the spectrum is particlelike:

(0.12)

Phonon-like collective excitations have been driven
very soon after the achievement of Bose–Einstein con-
densation using trap modulation methods (Section 4.3.1).
The excitation energies were quite low, i.e. in the same
order of magnitude as the trap secular frequencies,
εphon(p) ≈ "ωtrap . The de Broglie wavelength of the
phonons is then comparable to the condensate size, so
that the phonon spectrum is influenced by boundary
conditions. It is interesting to tap other regimes of exci-
tation energies that are free from this limitation. The
newly developed Bragg diffraction technique can be
employed to optically imprint high energy phonons and
even particle-like excitations into the condensate [138]
and thus to investigate the boundary between these two
regimes. Bragg diffraction has been observed earlier
with a two laser beam standing wave arrangement as
splitting of the matter-wave in momentum space [20]
(Section 5.3.3). The energy transfer εrec(p) could be
tuned by adjusting the angle between the two laser
beams according to Eq. (5.7) (Fig. 18). We have also
seen, that the efficiency of Bragg scattering atoms into
the first diffraction order depends on the fulfillment of
the Bragg condition (5.7), i.e., Bragg scattering is
velocity-selective. One can therefore measure the num-
ber of deflected atoms versus the relative detuning of
the lasers that drive the Raman transition, record the
recoil-induced resonances and call this procedure
Bragg spectroscopy [137]. The spectrum closely
reflects the momentum distribution of the atoms. Since
the mean-field interaction causes a finite momentum
spread of the condensate wavefunction, the shift and
broadening of the RIR reveal detailed information
about the condensate self-interaction (Fig. 18).

For a real condensate, there are several contribu-
tions to the width of the momentum distribution:
(1) The finite size of the trapped condensate limits the

εpart p( ) p2/2m gn0.+=

width of the momentum distribution according to
Heisenberg’s uncertainty relation [44]. (2) The inho-
mogeneous density distribution of the trapped conden-
sate shifts and smears out the momentum distribution in
Eq. (5.13). Since this is an inhomogeneous broadening,
it adds to the other linewidth as a quadrature sum.
(3) The finite length of the Bragg scattering pulse pro-
duces a broadening analogous to the time-of-flight
broadening in atomic beam spectroscopy, which is
inversely proportional to the pulse length. (4) Acoustic
noise may Doppler-broaden the linewidth of the fre-
quency difference of the lasers and reduce the resolving
power of the Bragg spectroscopy scheme. The shifts
and broadenings of the recoil-induced resonances have
been calculated for a realistic condensate density distri-
bution and verified in two experiments, one carried out
in the particle regime [137] and one in the phonon
regime [138].

Stenger et al. [137] performed the particle regime
Bragg scattering experiment, εrec(p) @ gn0, with coun-
terpropagating laser beams. For this case, the recoil
shift for sodium condensates at fulfilled Bragg condi-
tion (5.7) was εrec(p) = h × 100 kHz, which was much
larger than the mean-field energy at typical condensate
densities, gn0 = g × 5 × 1014 cm–3 = hg × 7.3 kHz. The
experiment could closely reproduce the expected shift
and broadening of the RIR shown in Fig. 19a.

Stamper-Kurn et al. [138] carried out the phonon
regime Bragg scattering experiment with laser beams
enclosing an angle of 14°. In this case, the recoil shift at
fulfilled Bragg condition (5.7) was εrec(p) = h × 1.54 kHz,
which was now smaller than the mean-field energy at
typical densities. The results of this experiment were
found in good agreement with calculations of the shift
and strength of the RIR shown in the Figs. 19b, 19c. In
order to understand the density dependence of the RIR,
we first have a look at the spectrum of light scattered
from a homogeneous dilute gas of atoms. If the gas is
nondegenerate, the spectrum mirrors the velocity distri-
bution of the atoms. In the presence of condensed
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Fig. 19. Bragg spectroscopy of recoil-induced resonances. Figure (a) shows the shift (solid line) and halfwidth (gray area) of the
RIR in the case of particle-like excitations, εpart(p) = h × 100 kHz, as a function of density. Figure (b) shows the RIR shift ∆ε and
Fig. (c) shows the RIR strength S(p), i.e., the fraction of atoms deflected into the first Bragg order, for phonon-like excitations,
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atoms, photon recoil events that take atoms to an
already occupied state are enhanced by Bose stimula-
tion, and if the atoms do not interact, according to Jav-
anainen et al. [218], the spectrum S(p, ε) exhibits two
characteristic peaks at ε = ±εrec(p). Later, Graham et al.
[219] extended the calculations by taking into account
two-body collisions and found the characteristic peaks
at an energy ε = ±εBog(p) given by the Bogolubov dis-
persion relation (2.50):

(0.13)

The experiments of Stamper–Kurn and Stenger [137,
138] measured exactly these spectra. However, instead
of looking at scattered photons, they analyzed the
shifts, widths and strengths of the recoil-induced Bragg
resonances. They measured, in particular, the line

strength, S(p) = , and the shift from the free

particle resonance, ∆ε ≡ εBog(p) – εrec(p), as a function
of the mean-field energy. In order to compare with the
experiment, the formula (5.14) needs to be slightly
modified to take into account the inhomogeneity of the
trapped condensate. Figures 19b, 19c show the shift and
strength of the RIR as a function of the condensate den-
sity. At low densities, when the excitations are particle-
like, the line shift tends to zero, εBog(p) ≈ εpart(p) 
εrec(p), and the line strength tends to its maximum
value, S(p)  1. At high densities, the excitations are
phonon-like, εBog(p) ≈ εphon(p) > εrec(p), and the RIR is
shifted towards higher energies, while the line strength
rapidly decreases. The relative weakness of phonon-
like excitations is due to the presence of correlated pair
excitations. The direct comparison of the two regimes
of excitations thus reveals important information about
correlation effects [138].

It is interesting to note, that the spectrum is equiva-
lent to the structure factor, which is itself the Fourier
transform of the density correlation function of the con-
densate quantum field. The structure factor plays a sim-
ilar role in the theory of many-body Schrödinger fields
as the familiar Q-function in quantum optics. The cor-
relations are probed by scattering quasiparticles back
and forth:

(0.14)

where  stands for the annihilation of a phonon with
wavevector p.

5.4.3. Second harmonic generation. The elemen-
tary excitations (i.e., small oscillations around the
many-body ground state) discussed in Section 4.3.1 are
well described by a linearized Gross–Pitaevskii equa-
tion. In contrast, large amplitude oscillations are sensi-
tive to anharmonicities induced by the nonlinear mean-
field interaction. Nonlinear effects may result in fre-
quency shifts of the normal modes and mode coupling.

S p ε,( )
ε

εBog p( )
-----------------δ εBog p( ) ε–( ).=

S p ε,( ) εd∫

S p( ) g〈 | âpâp
+ â p–

+ â p– â p–
+ âp

+ âpâ p– g| 〉 ,+ + +∼

âp

For mode coupling, the anisotropy of the trapping
potential plays an important role. Dalfovo et al. [220]
calculated the excitation frequencies for the normal
modes of cylindrically symmetric traps (ωr , ωz). The
modes are usually labelled with the projection of the
angular momentum onto the symmetry axis m. The
lowest lying modes are the breathing mode (high-lying
m = 0), the radial compression oscillation with axial
sloshing (low-lying m = 0), and the quadrupolar radial
shape oscillation (m = 2). The oscillations depend dif-
ferently on variations of the trap geometry. For exam-

ple, at the aspect ratio ωz/ωr = , the

excitation frequencies are shifted such that ωhigh(m = 0) =
2ωlow(m = 0). Thus, through active control of the trap
aspect ratio, it is possible to arrange for degeneracies of
the modes where the anharmonic mixing diverges.
Under such conditions, frequency doubling effects
should occur analogous to Second Harmonic Genera-
tion (SHG) in quantum optics.

Second harmonic generation has recently been
observed in the collective dynamics of a Bose–Einstein
condensate by Hechenblaikner et al. [221]. They mod-
ified the potential of their TOP trap by an additional
magnetic field oscillating along the symmetry axis with
twice the frequency of the rotating bias field. In the
time-average, this trap has a variable aspect ratio which
can be set by the amplitude of the additional field. Sim-
ilar to earlier experiments [129, 130], the hydrody-
namic mode was excited by sinusoidal modulation of
the rotating bias field amplitude. The response of the
condensate wavefunction, i.e., the shape oscillation,
was observed by standard time-of-flight imaging.
When the aspect ratio of the trap was set to the degen-
eracy condition, the condensate responded nonlinearly
by oscillating with twice the driving frequency.

In contrast to light, the material de Broglie wave
also depends on the particle’s mass. Therefore, modify-
ing the mass and keeping the momentum fixed modifies
the de Broglie wavelength. Two free atoms can be
coherently coupled to a molecular bound state. The
coupling may be realized through a Feshbach reso-
nance [222] (Section 6.1) or by exciting a Raman tran-
sition with laser beams [223] (Section 6.3). This pro-
cess may also be understood as Second Harmonic Gen-
eration.

5.4.4. Four-wave mixing and phase conjugation.
The idea of phase conjugation with coherent matter-
waves has been proposed by Goldstein et al. [224]. The
authors proposed dropping a condensate onto a cw
standing light wave which was tilted by the Bragg angle
from the horizontal plane. When falling through the
standing wave, a first-order Bragg diffracted BEC
would be generated. This wavepacket would four-wave
mix with the zero-order diffracted BEC and the falling
BEC to create a phase conjugate BEC. Just recently,
Four-Wave Mixing (4WM) has been experimentally
demonstrated. Slightly different from the proposal

1
6
--- 77 5 145+
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[224], Deng et al. [21] produced three condensates out
of one right inside the trap using the method of Bragg
scattering described in Section 5.3.3. The scattering
process produced the three condensate parts in the
same region of space, but with different momenta. The
initially overlapping condensates carried out half colli-
sions that nonlinearly mixed the de Broglie waves
before they flew apart.

The temporal evolution of four-wave mixing BEC
wavepackets has been numerically investigated by
Trippenbach et al. [225]. They considered three BEC

wavepackets with the initial atomnumbers  and
wavefunctions, ψ0(r – rj), j = 1, 2, 3, each one being the
solution of a Gross–Pitaevskii equation (GPE) with a
potential centered around rj . The initial locations rj and
the initial momenta pj were chosen to let the three
wavepackets perform full collisions. The evolution of
the total wavefunction ψtot(r, t) starting from the initial

state ψtot(r, 0) =  was

monitored by solving the time-dependent GPE (2.45).
The wavepackets mix due to the nonlinear mean-field
interaction term in the GPE giving birth to new wave-

packets ψ4 ~ g ψmψnexp p4 · r with momenta p4 =

–pj + pm + pn . Mixing configurations like ψjψj and

ψjψm do not produce wavepackets with new
momenta p4 ≠ pj , pm, pn , but describe self-phase mod-
ulation (Section 5.4.1) and cross-phase modulation,
respectively. Only terms that combine atoms from all
three wavepackets can produce new momenta. Further
restrictions on the possible mixing configurations j, m,
n = 1, 2, 3 arise from particle number, momentum and

N j
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N j
0ψ0 r r j–( ) i
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 exp
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ψ j
+

ψ j
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energy conservation laws:

(0.15)

In order to generate three BEC wavepackets with
different momenta, Deng et al. [21] applied two short
Bragg diffraction sequences in rapid succession. The
geometry of the standing wave laser beams is shown in
Fig. 20a in the laboratory frame. The first standing
wave was generated by lasers k1 and k2 detuned from
one another, so that the Bragg condition (5.7) was sat-
isfied and the momentum p2 = "k1 – "k2 was imparted
to the diffracted atoms. The second standing wave was
formed by the lasers k1 and k3 = –k1 and transferred the
momentum p3 = 2"k1 to the atoms. The durations and
intensities of the standing waves were adjusted to dis-
tribute the atoms in more or less equal parts into the
three momentum states p1 = 0, p2 and p3. A fourth
momentum state p4 was generated by four-wave mix-
ing.

The conservation laws only permit processes that
can be viewed as degenerate 4WM in an appropriate
reference frame. Figure 20b shows the process in a
moving frame defined by p1 ≡ –p3. Two atoms from ψ1
and ψ3 are bosonically scattered by an atom from ψ2
into the wavepackets ψ2 and ψ4. Each of the wavepack-
ets ψ1 and ψ3 sacrifices N4 atoms to create the new
wavepacket ψ4 and to increase the wavepacket ψ2. The
redistribution is coherent. Figure 20c shows the process
in a moving frame defined by p1 ≡ –p2. Energy conser-
vation only allows the terms satisfying p4 = p3. These
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Fig. 20. Four-wave mixing can be illustrated in the laboratory frame (a), in the moving frame defined by p1 = –p3 (b), and in the
moving frame defined by p1 = –p2 (c) and accordingly be interpreted in different ways (see text).
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terms are ψ2ψ3 and ψ1ψ3. In this frame, the pro-
cess may be interpreted as Bragg scattering of wave-
packet ψ3 by the matter-wave grating formed by ψ1 and
ψ2. The wavepacket ψ4 is just the first-order Bragg dif-
fracted wavepacket. In contrast to Bragg diffraction at
an optical grating (Section 5.3.3), Bragg diffraction at a
matter-wave grating relies on nonlinear mixing by two-
body collisions. The amount of redistributed atoms
therefore depends on parameters like the atomic inter-
action strength, the condensate size, and the collision
time, i.e., the time that the wavepackets spend together
before they separate. Time-of-flight images of the total
condensate wavefunction after 4WM are shown in
Fig. 21.

The occurrence of four-wave mixing was foreseeable
in view of the equivalence between the nonlinear cou-
pling strength g in the Gross–Pitaevskii equation (5.11)
and the higher-order susceptibility χ(3) in nonlinear
optics, which is known to produce such phenomena.
But despite the similarities with the optical counterpart,
four-wave mixing with matter-wave is fundamentally
different. Particle numbers must be conserved and the
energy-momentum dispersion relation is different from
the one that holds for massless photons. Furthermore,
while photons generally require the presence of a non-
linear medium to undergo higher-order processes, the
atomic matter-waves mix via binary collisions.

5.4.5. Spin mixing. In the four-wave mixing
scheme discussed above, the nonlinearly interacting
condensates are distinguished by their different center-
of-mass momenta. Another possibility is to nonlinearly

ψ1
+ ψ2

+ mix overlapping BECs in different internal states, e.g.,
Zeeman substates. The experimental feasibility of con-
fining spinor condensates of sodium atoms distributed
over all F = 1 hyperfine states in the same trap has trig-
gered extensive theoretical work [28, 128]. Spin-
exchange interactions constantly mix the different spin
components and drive complex nonlinear spin popula-
tion dynamics. For example, two mF = 0 atoms may col-
lide and change their internal state to one mF = –1 and
one mF = +1 atom. A recent experiment has demon-
strated, how a condensate (initially in the mF = 0 state)
evolves into a mixture of populations of all three hyper-
fine states and subsequently forms spin domains [8].
However, the observation of nonlinear spin mixing is a
challenge still lying ahead.

5.4.6. Dielectric properties of Bose–Einstein con-
densates. In the preceding sections, we discussed sev-
eral matter-wave effects with Bose–Einstein conden-
sates that were due to their intrinsic collision-induced
nonlinearity. However, regardless of this atom optical
nonlinearity, Bose-condensed gases can also behave as
highly dielectric media for light and be useful objects
for studies in nonlinear quantum optics.

Under normal circumstances, the refractive index of
a gas can only be increased at the detriment of transmis-
sion. However, in a gas of laser-driven Λ-shaped atomic
three-level systems, quantum interference can occur
cancelling out the absorption and leaving transparent
the otherwise opaque medium. The phenomenon is
termed Electromagnetically Induced Transparency
(EIT). In this system, when both lasers are tuned to res-
onance, the excited state is not populated and can be
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Fig. 21. False color absorption picture of the atomic density distribution after 4WM after 6 ms time of flight. The newly created
wavepacket ψ4 is smaller than the others (reprinted with permission from [21]).
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adiabatically eliminated. Upon tuning one of the lasers,
a dark resonance can be observed whose width is
power-broadened by the laser intensities, if Doppler
broadening, broadening by laser phase fluctuations or
by collisions between atoms can be neglected [226].
Close to the dark resonance, the dispersion (i.e., the fre-
quency dependence of the refractive index) is very
large. It depends on the width of the dark resonance.
The group velocity for a propagating light pulse is v g =

c , where n(ωprobe) is the

refractive index at the probe beam frequency ωprobe .
The propagation velocity is slowed down if the disper-
sion is large [227].

Taking advantage of their sodium BEC apparatus,
Hau et al. [228] produced a dense (n ~ 8 × 1013 cm–1)
gas of ultracold (T ~ 400 nK) atoms in an oblong mag-
netic trap and probed the cloud in situ and time-
resolved. They shone along the long axis of the cloud a
short pulse of circularly polarized probe light reso-
nantly tuned between the levels |F ' = 2,  = –2〉  and
|F = 1, mF = –1〉 . The transmitted pulse is detected with
a photomultiplier. In the presence of a low-intensity lin-
early polarized laser beam irradiated perpendicular to the
probe beam and tuned between the levels |F' = 2,  = –2〉
and |F = 2, mF = –2〉  which dressed the atomic cloud
and kept the probe light from being absorbed, the light
pulse was delayed. If BECs were used, the delay corre-
sponded to a speed of light on the order of only 17 m/s.
This corresponds to an unprecedentedly large nonlinear
refractive index. Inouye et al. [229] later reported light
group velocities of 1 m/s in the context of their experi-
ment on the amplification of light and atoms in a BEC
(Section 5.5.2). It is worth mentioning, that the effect
does not require quantum degeneracy, but rather high
density and low temperature, and a similar reduction of
the speed of light has subsequently been observed in
hot gases [230]. The group velocity reduction scales
with the gas density and inversely with probe beam
intensity. At low temperature, one can afford lower
probe beam intensity without being dominated by the
Doppler effect.

Such strong nonlinearities may prove useful for a
variety of applications in nonlinear quantum optics. An
interesting proposal [231] points out, that strongly
dielectric moving media may exhibit detectable relativ-
istic effects of light when the speed of light gets com-
parable to the local speed of sound or the flow of mass.
In particular, a vortex flow imprints a long-ranging
topological phase shift on incident light that can be
understood in terms of an optical Aharonov–Bohm
effect. This may prove useful for the detection of quan-
tum vortices in BECs (Section 4.3.4). At short ranges,
vortices should behave similar to gravitational black
holes and deviate light towards the vortex singularity.

n ωprobe( ) ωprobe
dn

dωprobe

----------------+ 
  1–

mF'

mF'

Beyond an “optical Schwarzschild radius,” the light is
trapped by the vortex.

5.5. Coherent Coupling of Optical Fields
and Matter-Waves

5.5.1. Superradiant Rayleigh scattering. An early
example for the influence of the dynamic coupling
between optical fields and matter-waves on the center-
of-mass motion of the material system is the Free Elec-
tron Laser (FEL). In this device, a combination of peri-
odic magnetic and optical fields causes a spatial density
modulation of a relativistic electron beam. This modu-
lation generates an oscillating current which amplifies
the optical field and increases the density modulation
again, thus initiating a runaway amplification process.
In an appropriate reference frame, the fundamental
mechanism that coherently scatters photons into the
optical field can be understood as cooperative Compton
scattering or Bragg scattering of the particles (i.e., elec-
trons) at a moving standing light wave. This point of
view together with the experimental observation of
recoil-induced resonances in atomic gases [214] trig-
gered a few years ago the idea of an atomic analogue to
the FEL: the Collective Atomic Recoil Laser (CARL)
[232]. In the CARL, photons are coherently redistrib-
uted between the modes of a moving standing light
wave by mediation of the atomic center-of-mass
motion. Cooperative Compton scattering leads to col-
lective atomic recoil and self-bunching of the matter-
wave which results in exponential gain. The recent
observation of Bragg scattering in Bose condensates
brought up the question whether BECs could serve the
purpose of an ultra-cold version of the CARL [29]. The
superradiant Raleigh scattering of laser light by a BEC
seen by Inouye et al. [22] already shows several fea-
tures peculiar to CARL. The long coherence time of
BECs strongly correlates successive Raleigh scattering
events via long-lived quasiparticle excitations. The pos-
itive feedback of these excitations on the laser light
results in exponential gain and directional bundling of
the scattered light.

When an incoming photon with wave vector k0 is
scattered by a condensed atom into the mode ks , with
ks = k0, this atom receives the recoil momentum q =
"ks – "k0 and, while it propagates with a speed of a few
centimeters per second through the condensate, it inter-
feres with the other atoms of the BEC to form a matter-
wave grating. The grating, which is long-lived com-
pared to the scattering rate, now stimulates subsequent
photons from the incoming laser beam to scatter into
the same direction ks and for its part picks up the
recoiled atoms. The process is self-amplifying, i.e., the
number of photons in ks grows exponentially in time.
The scheme can also be interpreted the other way round
as scattering of atoms into the BEC momentum
sidemode q stimulated by spontaneously scattered pho-
tons and bosonically enhanced by the numbers of
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atoms already being in the sidemode. The inversion that
produces the exponential gain is readily understood in
a dressed atom picture. The resting BEC and the irradi-
ated laser light form together an excited state that
decays into recoiling atoms and scattered photons. The
photons quickly leave the BEC which maintains the
inversion and permits, in principle, the complete trans-
fer of the BEC into the momentum sidemode. The
spontaneity of the scattering process ensures the irre-
versibility of the gain process.

For their experiment, Inouye et al. produced a cigar-
shaped sodium condensate with spatial extensions
zrms = 200 µm and rrms = 20 µm confined in a cloverleaf
trap. The BEC was irradiated from a radial direction
with a single linearly polarized laser light pulse tuned
∆ = –1.7 GHz below the D2 line. The variable laser inten-
sity, I = 1–100 mW/cm, and duration, τ = 10–800 µs, per-
mitted the adjustment of the single-atom far-off reso-
nance Raleigh scattering rate to R ≈ (I/"ω)(σ0Ω2/4∆2) =
45–4500 s–1. After the application of the laser pulse, the
magnetic trap was switched off and a time-of-flight pic-
ture was taken after 20–50 ms of free expansion
(Fig. 22). Additionally, the scattered light could be
recorded either spatially resolved with a CCD camera
or time-resolved with a photomultiplier. In the follow-
ing, we will discuss some of the observations made in
this experiment.

Raleigh scattering. The total gain depends on the
size of the condensate, i.e., the distance over which sin-
gle-path gain can happen. Mode competition quenches
the scattering in all but the maximum gain directions
[233]. Nonspherical BECs therefore yield highly aniso-
tropic Raleigh scattering. The competing process of
Raman scattering into different Zeeman sublevels is not
bosonically stimulated. For cigar-shaped BECs the
gain path is longest along the symmetry axis, which
results in so-called end-fire modes. Scattering recoils
the atoms and has to stop when all the atoms are trans-
ferred to higher momentum sidemodes. Consequently,
Inouye et al. observed highly directional fluorescence
light bursts along the symmetry axis, whose durations

were shortened as the irradiated laser intensity was
increased.

Since the end-fire modes enclose a 90° angle with
the incoming laser beam and the frequency of the light
does not change during Raleigh scattering, the scat-
tered matter-wave gets a 45° momentum kick. The
time-of-flight images in Fig. 22 show the momentum
distribution of the condensate after irradiation of a sin-
gle laser pulse with various durations. For longer pulse
durations, repeated Raleigh scattering at the higher
momentum sidemodes gives rise to additional peaks.

Superradiance. The process is equivalent to Dicke
superradiance, where the overlapping radiation fields
of a dense sample of excited atomic dipoles stimulate
each other to synchronously emit light, thus leaving the
sample in a coherent superposition state. The total
emission time is reduced to short fluorescence bursts.
While in classical superradiance the sample of two-
level systems evolves into an oscillating coherence of
internal electronic states, in the MIT experiment, we
have a coherent oscillation of translational sidemodes.
Superradiance does not require quantum degeneracy,
but the dipoles must have a long coherence time. Dop-
pler broadening accelerates relaxation. In the MIT
experiment, where the coherence is stored in the
motional degrees of freedom, having long coherence
time is equivalent to having a large coherence length.
BECs have a large coherence length that corresponds to
their size, while for thermal clouds the coherence
length is just its thermal de Broglie wavelength. This
explains why Inouye et al. could not observe superradi-
ance using thermal clouds.

The superradiance was found to be very sensitive to
the polarization of the incoming laser light. Since the
atoms were polarized in axial direction by the magnetic
field of the cloverleaf trap, photons polarized in the
same direction were absorbed and spontaneously
reemitted according to the (torus-shaped) dipole radia-
tion pattern for π radiation, i.e., not in axial direction.
On the other hand, if the laser beam was polarized per-
pendicular to the long BEC axis, the (bow-tie-shaped)
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Fig. 22. Superradiant Raleigh scattering (reprinted with permission from [22]). The time-of-flight images show the momentum dis-
tribution of the condensate after irradiation of a single laser pulse polarized perpendicularly to the long axis and having the durations
(a) 35, (b) 75, and (c) 100 µs. For the longer pulse durations, repeated scattering processes give rise to additional peaks.
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dipole radiation pattern for σ± radiation supported
superradiance.

5.5.2. Matter-wave and light amplification. The
superradiance experiment of Inouye et al. realizes a
matter-wave amplifier along the lines described by Law
et al. [234] and Moore et al. [235]. The momentum
sidemodes which they observed may be regarded as
amplified vacuum fluctuations. However, the proof that
the amplification process is coherent, i.e., that the
original matter-wave has a well-defined phase relation
to the amplified matter-wave was still lacking. This
proof has recently been provided by two experiments
by Kozuma et al. [23] and at the MIT [24, 229].

In extension of the superradiance experiment, the
MIT group seeded the matter-wave amplifier with a
very small condensate (~0.1% of the total condensate)
thus substituting the quantum fluctuations in their role
of input wavepacket. The seed condensate was pro-
vided by a matter-wave Bragg diffraction pulse (Sec-
tion 5.3.3). It interfered with the main condensate to
form a matter-wave grating which was then amplified
by a subsequent Raleigh scattering pulse. The gain in
atom number for the seed mode could be set between
10 and 100 by controlling the intensity and duration of
the Raleigh pulse. Inouye et al. also demonstrated the
coherence of the amplification process by setting up a
Ramsey type active atom interferometer scheme whose
one arm consisted of the amplified seed condensate and
the other arm of a reference condensate created from
the original condensate by Bragg diffraction. The
observation of interference proved the coherence of the
amplification process.

Kozuma et al. chose a similar approach. They pro-
duced an elongated rubidium condensate in a cloverleaf
trap and, in contrast to the MIT group, irradiated the
superradiance and Bragg diffraction pulses into the
long axis of the condensate after releasing it from the
trap. They reduced the superradiant gain of their system
so much that spontaneous quantum fluctuations were
not amplified, produced a seed condensate wavepacket
by Bragg diffraction (~6.5%) and showed that this was
amplified to up to 66% of the total BEC by a Raleigh
scattering pulse. They could also demonstrate interfer-
ence between the amplified and the original BEC wave-
packets in a Mach–Zehnder type atom interferometric
setup [207]. In a traditional Mach–Zehnder atom inter-
ferometer, a wavepacket is first split with a π/2 interac-
tion pulse, thus recoiling half of the atoms and leaving
the other half unaffected. A subsequent π pulse reverses
the momentum, so that the wavepackets move towards
each other. A final π/2 pulse recombines the compo-
nents and produces interference, provided every inter-
action was really coherent. Kozuma et al. used Bragg
diffraction interaction pulses in their Mach–Zehnder
interferometer with an essential modification: The first
π/2 pulse consisted of a combination of a Bragg pulse
which produced the seed condensate and a superradi-
ance pulse which amplified it to a size corresponding to

half the BEC. The observation of interference thus
proved that the first composite π/2 pulse maintained the
coherence, that the long-range order was preserved for
the amplified BEC and that it was phase-locked to the
seed BEC. An important drawback for matter-wave
amplifiers and atom lasers (Section 5.2.3) is the limited
reservoir of atoms. The amplification imperatively
stops when all the atoms of the BEC have been trans-
ferred into the amplified momentum sidemode.

The atom optical devices listed in Section 5.1.1 are
all passive devices. In contrast, the phase-coherent mat-
ter-wave amplifiers discussed above actively stimulate
the atoms to scatter into the amplified mode. It is worth
pointing out the analogy between this scattering pro-
cess and four-wave mixing. While matter-wave 4WM,
which may be viewed as bosonically enhanced redistri-
bution of atoms between momentum sidemodes medi-
ated by the mean-field, involves four atoms (two in the
input and two in the output channel) and quantum opti-
cal 4WM, which may be viewed as coherent redistribu-
tion of photons between light modes, involves four
photons, the process underlying the superradiant
Raleigh scattering takes place between two atoms and
two photons. In all three cases, bosonic stimulation
plays a key role.

We have seen in the superradiance experiment, that
the Raleigh scattered light is stimulated into the end-
fire modes. The process is self-amplifying and can be
used as a light amplifier for optical seed pulses. In a
subsequent experiment, Inouye et al. [229] demon-
strated the amplification of light pulses. The occurrence
of Rabi oscillations in the temporal behavior of the gain
showed that the gain process was coherent.

5.5.3. Quantum optics with atoms. The intrinsic
coherence of Schrödinger fields implies the possibility
of “exotic” quantum correlations. Laser light is, nor-
mally, best described by a coherent or Glauber state.
But other quantum states of light are possible, i.e.,
squeezed states, Schrödinger cat states, states with sub-
Poissonian photon distribution, e.g., pure number or
Fock states, and even single photon states. All these
states have been observed in ultrahigh finesse microma-
sers. A mathematically very similar system is the Hil-
bert space of the motion of a single particle in a har-
monic trap, e.g., an ion stored in a Paul trap [175]. Non-
coherent motional quantum states have been observed
by Wineland et al. [176]. Quantum correlations have
also been studied theoretically in atomic Bose–Einstein
condensates, and there are propositions on how to cre-
ate noncoherent states of BECs [27, 236, 237]. (Note
that noncoherent state BECs are not less coherent, but
contain more complicated quantum correlations than
Glauber state field distributions.) This field of investi-
gations may be called “quantum atom optics” in anal-
ogy to the field of quantum optics dealing with the non-
classical features of light.

At the interface between the macroscopic world and
the microscopic quantum world, Schrödinger cat states
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are epitomized by new theories on quantum decoher-
ence. Schrödinger cat states are coherent superposi-
tions of multi-particle quantum states. A perfect cat
state can be written as |N, 0〉  ± |0, N〉 , i.e., all particles
are in a superposition of two states of an arbitrary
degree of freedom, e.g., coordinate, momentum or inter-
nal excitation. Because of their large scale, mesoscopic
coherent quantum objects like Bose condensates are
ideal testing grounds for studies of fundamental ques-
tions on quantum entanglement, quantum measure-
ment, and decoherence. Unfortunately, big Schrödinger
cats are extremely sensitive to decoherence. Proposals
to generate such states in BECs [27, 236, 237] have
been reexamined by Dalvit et al. [238] who also sug-
gested several measures to master the decoherence
problem. The decoherence rate γdec generally depends
on the “macroscopicity” N of the quantum state and its
contact with the environment. Thermal collisions
(occurring at a rate γcoll) are the main reason for deco-
herence in a BEC cat, γdec ~ N2γcoll [238], but Raleigh
scattering and three-body recombination also contrib-
ute. In the extreme case of a perfect cat state, the coher-
ence is destroyed by scattering of a single atom, since
its detection tells the state of all atoms. It is worth
emphasizing that Schrödinger cat states should not be
confused with the beamsplitter states discussed in Sec-
tion 5.2.3, where every single atom has the option of
being in one of two states, (|1, 0〉  ± |0, 1〉)N. Beamsplitter
states only involve single-particle correlations and are
readily produced by Bragg scattering techniques.

The perfect cat state exhibits maximum entangle-
ment and is, in this respect, similar to Einstein–Podol-
ski–Rosen (EPR) and Greenberger–Horne–Zeilinger
(GHZ) states. Such states of several entangled particles
are currently investigated in the context of quantum
computation and have recently been realized with sin-
gle ions [239] and with micromasers [240]. Controlled
collisions in optical lattices may offer new opportuni-
ties for entangling neutral atoms and implementing
schemes for coherent quantum operations [241]. How-
ever, while for computational purposes it is necessary
to show up with a scheme where the fundamental reg-
isters (called qubits) can be individually addressed, the
delocalized Bose-condensed atoms do not lend them-
selves to individual manipulations. Still it is conceiv-
able that new ideas that make use of the mesoscopic
coherence of BECs will emerge from the paradigm of
coherent entanglement and quantum control between
BECs and laser modes.

The theory describing the coherent coupling of opti-
cal quantum fields and Bose–Einstein condensates
encompasses the classical domains of quantum optics
and atom optics as limiting cases. This theory is in
many aspects similar to optical cavity-QED theories,
and the analogy seeds new ideas about cavity atom
optics, entanglement between atomic and laser beams,
and optical control of BECs [28]. As an example: in
quantum optics the Optical Parametric Amplifier

(OPA) generates correlated photon-photon states. Sim-
ilarly, as we have seen in the superradiant Raleigh scat-
tering experiments, the coherent interaction between
light and BECs creates entangled atom-photon states
[233]. The range of possible applications is wide and
may include tests of Bell’s inequality, quantum cryp-
tography and quantum teleportation.

CHAPTER 6.
COLLISION RESONANCES

The mean-field interaction of ultracold dilute
atomic gases is dominated by binary s-wave collisions.
In the shapeless approximation, the collisions can be
modelled by a single atomic constant, the scattering
length, which measures the low energy phase shift of
the relative de Broglie wave of the atoms during a col-
lision process. The scattering length determines the
magnitude of the elastic and inelastic collision rates.

However, the scattering length may be manipulated
with optical [242] or microwave [243] radiation fields
or, close to Feshbach collision resonances, with exter-
nal magnetic fields [244]. Feshbach resonances were
first predicted for nuclear systems [245], and have
recently regained much attention in the context of
Bose–Einstein condensation. They permitted the con-
densation of a new atomic species (Section 6.2) and are
currently investigated in the context of free–bound cou-
pling and the creation of molecular BECs (Section 6.3).

6.1. Feshbach Resonances in 85Rb and 23Na

Feshbach resonances are collision resonances that
occur when the energy of a colliding channel coincides
with the energy of a vibrational bound state of a poten-
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Fig. 23. Feshbach resonance in collisions of ground-state
85Rb atoms [12]. The atoms collide in the f = 2 + f = 2 chan-
nel (scattering wavefunction ucoll). A vibrational bound
state of the f = 3 + f = 3 channel has almost the same energy
(wavefunction ures). As the energies are tuned to resonance,
the wavefunction ures is resonantly enhanced.
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tial that correlates with a higher lying asymptote
(Fig. 23). If the bound state and the free atoms have dif-
ferent magnetic momenta, the resonance condition may
be tuned via external magnetic fields exploiting the
Zeeman-effect. When a Feshbach resonance is crossed,
the scattering length goes through a singularity (Fig. 24).

The complex spin-structure of the alkalis results
from a combination of exchange, hyperfine and Zee-
man interaction and gives rise to a multitude of energy
levels, with a good chance of having one or more
Feshbach resonances. Verhaar and coworkers [246,
247] performed coupled multi-channel calculations and
found Feshbach resonances at experimentally accessi-
ble field strengths in 85Rb and 23Na.

There are several ways to detect Feshbach reso-
nances. The first way is using Photoassociation Spec-
troscopy (PA). PA is a frequently used tool to explore
the level structure of excited molecular states by irradi-
ating a laser tuned between the colliding channel and a
vibrational bound level of the excited state potential
[248]. Close to a Feshbach resonance the colliding
wavefunction amplitude is enhanced and therefore its
Franck–Condon overlap with the excited state wave-
function, and the photoassociative transition rate gets
larger. Since the excited molecular state preferentially
decays into the dissociation continuum, where the
atoms have high kinetic energy, the transition rate may
be monitored via trap losses. This method has been
employed to detect a broad Feshbach resonance in 85Rb
near B = 160 G with 6 G width [12].

A second method is based on the fact that the elastic
cross section and therefore the collision rate in an

atomic gas are both proportional to the square of the
scattering length in the limit of very low temperatures.
This yields a simple recipe for probing Feshbach reso-
nances: One drives a dense cold cloud out of thermal
equilibrium and simply measures the rethermalization
speed. It takes on average three collisions per atoms to
rethermalize a sample. Close to the Feshbach reso-
nance the rethermalization speed should be drastically
enhanced. This method has provided an improved mea-
surement of the location of the 85Rb Feshbach reso-
nance [249], which in turn has been utilized to calibrate
the calculations of the 85Rb potentials and to enhance
their precision to a large extent. On the other hand, the
influence of the Feshbach resonance on the collision
rate suggests its use to control and improve evaporative
cooling of atomic clouds.

A third method is based on the influence of the scat-
tering length on the mean-field energy of Bose–Ein-
stein condensates. In fact, the scattering length is the
only atomic parameter showing up in the Gross–Pitae-
vskii equation. It governs the shape and size of the BEC
wavefunction, the BEC dynamics and of course all non-
linear interactions. The effect of a Feshbach resonance
on BECs has been studied in 23Na [11]. Unfortunately,
this experiment also showed the occurrence of inelastic
collision processes close to the Feshbach resonance
leading to a strong depletion of the condensate. This
will most likely limit the practical use of this resonance
in sodium.

6.2. Bose–Einstein Condensation in 85Rb

The zero-field scattering length of the 85Rb isotope
in the ground-state F = 2, mF = –2 is a|2, –2〉 ≈ –400aB
[12]. The negative scattering length inhibits the forma-
tion of stable Bose–Einstein condensates with this
atomic species. However, in proximity to a Feshbach
resonance the scattering length is very sensitive to
ambient magnetic fields, B (Fig. 24), which can alter its
value and even its sign.

The JILA group, led by Wieman, recently reached
the quantum degenerate regime with 85Rb [250] operat-
ing in a regime of positive scattering length. Efficient
evaporation is hindered by a deep notch in the elastic
scattering cross section at collision energies around
350 µK, a peculiarity of 85Rb, and by inelastic two- and
three-body collisions being very frequent at some
regimes of the scattering length. Cornish et al. [250]
avoided these difficulties using a relatively weak trap,

 ≈ 2π × 13 Hz, to reduce the atomic cloud density and
by following a sophisticated evaporation path. The low
density slowed down the evaporation and required a
long magnetic trap lifetime. The first evaporation step
was performed in the high-field wing, at B = 250 G, far
from the Feshbach resonance. When the sample was
cooled to 2 µK, the sign of the scattering length was
reversed and its absolute value reduced, a|2, –2〉(B) =
290aB, by moving the magnetic field strength towards
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Fig. 24. Magnetic field dependence of the scattering length
close to the strong Feshbach resonance near 156 G in 85Rb
atoms. The scattering length is positive within a large inter-
val.
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the Feshbach resonance to B = 162.3 G (Fig. 24). This
further reduced the inelastic collision rate. The evapo-
ration was now pursued until the condensation thresh-
old was approached with 106 atoms. While the conden-
sate formed, inelastic loss processes rapidly reduced
the trapped atom number to 104 at typically 15 nK tem-
perature and 1012 cm–3 density. The BEC lifetime was
about 10 s.

Size and shape of the condensate depend on the self-
energy and thus on the scattering length. Tuning the
magnetic field across the Feshbach resonance changes
the condensate shape between the limits of an ideal gas
Gaussian density distribution and a Thomas–Fermi
regime parabolic distribution. Cornish et al. recorded
pictures of the condensate with 1.6 ms absorptive time-
of-flight imaging, determined the scattering length
from the shape of the BEC, and confirmed the magnetic
field dependence shown in Fig. 24. At the magnetic
field strength B = 156.6 G, the scattering length climbs
to a|2, –2〉(B) > 10000aB, and the measured condensate
peak density yielded na3 ≈ 0.01. In this regime, the
dilute-gas assumption na3 ! 1 begins to break down,
and effects beyond the mean-field approximation, like
characteristic shifts in the frequencies of collective
excitations, may be observed.

When the self-energy was reduced by tuning the
scattering length from a positive regime away from the
Feshbach resonance into a regime where the scattering
length is negative (Fig. 24), i.e., beyond B = 166.8 G, the
BEC exhibited an abrupt dynamical behavior. The BEC
shrank until it collapsed ejecting a burst of hot atoms. If
we compare to Hulet’s experiment (Section 3.2.1) which
relies on the ensemble analysis of collapsed conden-
sates, we find that the ability to control the value and
the onset of the a < 0 instability greatly facilitates stud-
ies of the collapse dynamics. Also, we expect that the
successful realization of BEC in 85Rb taps a whole new
field of possibly very interesting investigations with the
scattering length as an additional, dynamically tunable
degree of freedom.

6.3. Molecular Bose–Einstein Condensates

Recent theoretical investigations [26, 222, 251–
253] have shown, that the physics of Feshbach reso-
nances is considerably richer than that of an altered
effective scattering length. Feshbach resonances pro-
vide a free–bound coupling between the two-colliding-
atoms continuum state and a quasibound vibrational
molecular state that has some analogy to Second Har-
monic Generation (SHG). When the Feshbach reso-
nance is excited in a Bose condensate, the quasi-mole-
cules are predicted to form a molecular BEC. The
atomic and the molecular BEC are coupled via inter-
condensate tunneling of atom pairs. The system may
even exhibit Josephson oscillations as a signature of
this novel type of quantum tunneling. Free–bound cou-
pling can alternatively be established by driving two-

photon Raman photoassociation transitions [223, 254].
This system closely resembles the Feshbach resonance
system and may generate molecular BECs and Joseph-
son oscillations between atomic and molecular BECs
as well.

The possibility of using incoherent PA to convert
large amounts of free atoms to low-lying vibrational
levels of ultracold groundstate molecules has been
pointed out by Band et al. [255]. Ultracold molecules
have recently been produced in such photoassociation
schemes [256]. On the other hand, the equilibrium
yield of coherent Raman PA depends on the entropies
of the coupled systems [223]. In a thermal atomic gas,
the (quasi-)continuum of dissociated atomic states
(they are still confined in a magnetic trap) has a much
larger entropy than the discrete spectrum of vibrational
molecular states. Therefore, the balance of the coher-
ent free–bound coupling has to be on the side of the
continuum, i.e., molecules dissociate more frequently
than they associate. Quantitative estimates of the PA
rates have to thermally average over transition rates (as
opposed to transition amplitudes). As a consequence,
coherent processes, even STImulated Raman Adiabatic
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Fig. 25. Free–bound–bound two-photon photoassociation in
87Rb. While two 2S1/2, f = 1, mf = –1 ground state atoms in
the hyperfine state are colliding, they may undergo a photo-
associative Raman transition to the bound vibrational state
v  = –2, l = 0, F = 2, mF = –2 located 636.0094 MHz below
the ionization threshold. The intermediate excited state is v,

J = 0 at 12555 cm–1 of the  potential connected to the
2S1/2–2P1/2 asymptote. The levels are chosen to optimize the
Franck–Condon overlap.
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Passage (STIRAP) transitions, have negligible molec-
ular yield. (In short, STIRAP consists of a counterintu-
itive pulse sequence of the two frequencies involved in
the Raman process.) However, as the atomic cloud
approaches quantum degeneracy, the dimensionality of
the phase space is reduced to a large extent (a BEC has
zero entropy) and the coherent free–bound coupling
should transform a considerable amount of condensed
atoms into a molecular BEC. In specific schemes, e.g.,
by quickly removing the molecules from the interaction
region [254] or by using two-photon photoassociative
STIRAP pulses [257], it should be possible to produce
molecules in a controlled manner with unity yield. The
formation of molecules within a condensate can be
understood as a Bose-stimulated chemical process. The
dynamics of this process is driven by quantum statistics
rather than by chemical forces between individual
atoms.

A possible system to study such phenomena is 87Rb
(Fig. 25). Two-photon transitions to very weakly bound
vibrational molecular Rydberg states have been
observed in a dark MOT [258] and later even in BECs
[259]. A narrow linewidth of down to 1.5 kHz of the
Raman dark resonance, only observed with quantum
degenerate gases, is a clear indication of coherent cou-
pling. The narrow dark resonance permitted the mea-
surement of the binding energy of the molecular state,
E = 2π" × 636.0094 MHz, with an unprecedented
resolution only limited by the inhomogeneous spatial dis-
tribution of the atoms and their self-energy. The mole-
cules were produced at rest, because the Raman process
does not transfer momentum. Molecular condensates
may form in the groundstate of the trap confining the con-
densate, provided the dark resonance width is inferior to
the trap secular frequencies. Unfortunately, fast inelastic
decay into lower vibrational states limits the lifetime of
the molecular Rydberg states to less than 1 ms.

CHAPTER 7.
CRITERIA OF BOSE–EINSTEIN CONDENSATION

The phenomenon of Bose–Einstein condensation
involves several rather delicate concepts, such as coher-
ence and gauge-symmetry breaking. In literature, these
concepts are very often misinterpreted. Therefore we
feel it is necessary to give an accurate and detailed
description of the principal notions lying in the founda-
tion of the considered phenomenon.

One generally implies that the Bose–Einstein con-
densation is a macroscopic occupation of a single
quantum state, usually of the ground state, as it was
suggested by Bose [1] and Einstein [2] who considered
this phenomenon for ideal gases. For noninteracting
atoms, the meaning of single-particle quantum states is
well defined. This, however, is not always the case for
interacting atoms. In order to formulate more precisely
what the Bose–Einstein condensation actually is,
several criteria are employed. Here we give a careful
analysis of these criteria, of their mutual interrelations,

and of their relation to the original idea [1, 2] of a mac-
roscopic occupation of the ground state.

Intuitively, one expects that the condensation in a
system of N bosons occupying volume V can occur
when the thermal wavelength λT becomes much larger
than the mean interatomic distance a, that is,

(7.1)

where m0 is the atom mass; T, temperature. At the same
time, the characteristic interaction radius, rint, has to be
much smaller than the mean interparticle distance

(7.2)

the interaction radius being of the order of scattering
length as. In the other case, strong interaction between
atoms could deplete the condensate or even completely
destroy it. For the density of particles

the above conditions can be written as

(7.3)

Inequalities (7.1) and (7.2), or (7.3), are the expected
conditions for the occurrence of the Bose–Einstein con-
densation. The discussion of sufficient conditions is
given in the following subsections.

7.1. Einstein Criterion of Condensation

The statement of a macroscopic occupation of a
quantum state [2] can be formalized as follows. Let an
orthonormalized basis {ϕn(r)} be given composed of
wave functions corresponding to single-particle quan-
tum states labelled by a multi-index n. Field operators
can be expanded in this single-particle basis as

(7.4)

with the coefficients

A physical quantity is called macroscopic if it is pro-
portional to the average number of particles

(7.5)

being the statistical average of the number-of-particles
operator

The quantity  is the occupation number of a
quantum state n. The occupation is termed macroscopic

a
λT

-----  ! 1, λT
2π"

2

m0kBT
---------------- 

 
1/2

,≡

rint

a
------- ! 1, rint as ,∼

ρ N
V
---- a 3– ,∼≡

ρλT
3
 @ 1, ρrint

3
 ! 1.

ψ r( ) anϕn r( ),
n

∑=

an ϕn ψ,( ) ϕn* r( )ψ r( ) r.d∫≡=

N N̂〈 〉≡ an
†an〈 〉 ,

n

∑=

N̂ ψ† r( )ψ r( ) r.d∫≡

an
†an〈 〉
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if  is proportional to N. In equilibrium systems,
it is the single-particle ground state, i.e., the state of the
minimal single-particle energy, that can become mac-
roscopically occupied, which means that the number of
particles in the ground state,

(7.6)

can become proportional to N. This can be stated more
rigorously by means of the limit

(7.7)

Condition (7.7) defines precisely what one actually
implies when talking about the macroscopic occupa-
tion of a quantum state.

However, the criterion of condensation (7.7) has
several weak points. First of all, there is an ambiguity
in choosing a single-particle basis {ϕn(r)} which all the
following consideration is based on. Such a basis natu-
rally arises and is well defined for ideal gases [260],
while for interacting particles it is, in general, not
uniquely defined. Hence the single-particle ground
state and the related occupation number are not well
defined for a system of interacting atoms.

Some delicate problems may appear in defining the
limit (7.7), as was shown for an exactly solvable model
(Michoel and Verbeure [261]). This means the follow-
ing. The number of particles in the ground state (7.6)
can be defined as

It happens sometimes that

(7.8)

although

(7.9)

It is also worth emphasizing that, when considering
the criterion (7.7), one usually tacitly assumes that the
macroscopic occupation occurs solely for one quantum
level, i.e., for the ground state level. But, in general, the
situation may happen when several quantum states, or
even an infinite number of them, become macroscopi-
cally occupied so that

(7.10)

for several quantum numbers n.

7.2. Penrose Criterion of Condensation

Penrose [262] and Penrose and Onsager [263] criti-
cized the criterion (7.7) stressing that “this criterion has
meaning for noninteracting particles only, because sin-

an
†an〈 〉

N0 a0
†a0〈 〉 ,≡

N0

N
------

N ∞→
lim 0.>

N0 Nδ, Nδ an
†an〈 〉 .
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δ
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δ 0→
lim=

  N δ
δ
 

0
 
→
 lim 

N
 

∞→
 lim 0=

  N δ 0. > 
N

 
∞→

 lim 
δ

 
0

 
→

 lim

1
N
---- an

†an〈 〉
N ∞→
lim const 0>=

 

gle-particle energy levels are not defined for interacting
particles.” They suggested a generalization of this crite-
rion valid for interacting particles as well. The general-
ization is based on the definition of the eigenvalues of
the first-order density matrix

(7.11)

The eigenvalues of the matrix (7.11) are given by the
eigenproblem

The largest eigenvalue defines the norm

The Penrose criterion of condensation reads

(7.12)

This criterion can be further generalized by intro-
ducing the notion of order indices for reduced density
matrices (Coleman and Yukalov [264, 265]). For a

 

k

 

-order reduced density matrix

(7.13)

the 

 

order index

 

 is defined as

(7.14)

where  is the norm of the matrix  with elements
(7.13). Different types of ordering appearing in the sys-
tem of bosons can be classified [266, 267] as follows:
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. This classification
encompasses three kinds of possible condensation:
Even condensation [268–276], with 
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, when the
groups of even numbers of atoms are condensed but
there is no single-particle condensate. Mid-range con-
densation [277–280], with [
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/2] < 

 

α
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 < 
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, when there
arises algebraic mid-range order but there is no long-
range order. The Bose–Einstein singe-particle conden-
sation corresponds to the case 

 

α

 

k

 

 = 

 

k

 

.
Criteria based on the consideration of norms of

reduced density matrices are rather general. However, it
is not always easy to find the eigenvalues of the density
matrices for interacting particles.
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7.3. Off-Diagonal Long-Range Order

The concept of off-diagonal long-range order (Yang
[281]) can be formulated as follows. If the limit

(7.16)

where r12 ≡ |r1 – r2|, is not zero, then there occurs Bose–
Einstein condensation, and ρ0 is the condensate density.
Really, for the first-order density matrix one may write
the spectral resolution

(7.17)

in which γn are the eigenvalues and ϕn(r), the eigen-
functions of . Note that γn play the role of the average
occupation numbers of the single-particle states
labelled by n. If one assumes that the considered sys-
tem is uniform, then the main contribution to the
sum (7.17), as r12  ∞, is made by the term contain-
ing the largest eigenvalue γ0 and the ground-state func-

tion ϕ0(r) = 1/ , so that

(7.18)

Here it is not necessary that ϕ0 be the average 〈ψ〉  of the
field operator. To be finite, the limit (7.18) requires that
γ0 ~ N. Hence the consideration is reduced to the Pen-
rose criterion of condensation (7.12).

Thus, the long-range order defined by the limit
(7.16) is a sufficient condition for the occurrence of
condensation in a nonuniform system. But, in general,
this is not a necessary condition, and it is not applicable
to nonuniform systems. For example, for a system of
atoms localized in a confined region, say inside a trap,
one has

(7.19)

Therefore,

(7.20)

irrespectively of the values of γn. Condition (7.16)
excludes the existence of Bose–Einstein condensation
in confined systems.

7.4. Broken Gauge Symmetry

The concept of broken gauge symmetry is often
used as a sufficient condition for Bose–Einstein con-
densation. The standard way of breaking gauge sym-
metry is by means of the Bogolubov prescription [282]
for the field operator which is presented as the sum

(7.21)

of a nonoperator term ψ0 and an operator  such that

(7.22)

ρ1 r1 r2,( )
r12 ∞→
lim ρ0 0,>≡

ρ1 r1 r2,( ) γnϕn r1( )ϕn* r2( ),
n

∑=

ρ̂1

V

ρ1 r1 r2,( ) . γ0ϕ0 r1( )ϕ0* r2( ), r12 ∞.

ϕn r( )
r ∞→
lim 0.=

ρ1 r1r2( )
r12 ∞→
lim 0=

ψ r( ) ψ0 r( ) ψ̃ r( )+=

ψ̃

ψ0 r( ) ψ r( )〈 〉 , ψ̃ r( )〈 〉 0.= =

The nonoperator term ψ0 corresponds to condensate
atoms in a single-particle ground state, while the oper-
ator  describes atoms outside the condensate.
Because of Eqs. (7.21) and (7.22), the statistical aver-
age of the field operator

(7.23)

is not zero, which manifests the broken gauge symme-
try as far as the average 〈ψ〉  is now not invariant under
the gauge transformation

where α is an arbitrary real number.

In order to understand better what are the assump-
tions under which the prescription (7.21) is valid, it is
useful to look attentively at the original ideas of Bogol-
ubov [282], which we shall follow below. Let us select
an orthonormalized basis {ϕn(r)} of single-particle
states. The field operator can be expanded over the cho-
sen basis as

(7.24)

with an = (ϕn, ψ). From the Bose commutation relations

one has

Define the condensate and noncondensate operators

(7.25)

From the commutation relations for an it follows that

For treating ψ0 as a nonoperator term, it is necessary
that this commutator would be asymptotically small, at
least, in the thermodynamic limit, when

N  ∞, V  ∞,   const.

This is really the case for uniform systems for which
one has the basis {ϕk(r)} formed of plane waves

Then one gets

(7.26)
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However this is not yet sufficient for announcing ψ0 a
nonoperator term. Consider the operator a0 = (ϕ0, ψ).
Taking into account that

we have

This shows that if ψ0 is not an operator then a0 is also

such. Hence, one should have [a0, ] = 0, which con-

tradicts the commutation relation [a0, ] = 1. Then one
needs to make an assumption that the ground state is
macroscopically occupied, so that

(7.27)

Only after this, one can say that the finite value of the

commutator [a0, ] is negligibly small as compared to
the macroscopic number (7.27),

(7.28)

As is evident, the assumption (7.27) is nothing but the
Einstein criterion of condensation (7.7). In this way, the
Bogolubov prescription (7.21) presupposes Bose–Ein-
stein condensation. Moreover, this prescription
assumes that the condensation occurs solely in one

quantum state. In general, the commutator [ψn, ] can
become asymptotically small for several states. For
instance, the commutator

is asymptotically, as V  ∞, small for any k. Never-
theless, one does not announce that all ψk are nonoper-
ator terms. Vice versa, all ψk with k ≠ 0 are treated as
operators satisfying the standard Bose commutation
relations. This means that the Bogolubov prescription
segregates one ground-state level that is assumed to be
macroscopically occupied, so that relation (7.27) holds
true; and all other levels are not occupied macroscopi-

cally, so that  ~ 1 for n ≠ 0.

To be practical, the Bogolubov prescription (7.21)
requires one more assumption that is always made. One
treats  as a small perturbation about the mean-field
value ψ0 = 〈ψ〉 . This is equivalent to the assumption that
almost all atoms are condensed,

(7.29)

In this way, breaking gauge symmetry by means of
the Bogolubov prescription (7.21) presupposes the
existence of Bose–Einstein condensation. This pre-

ϕ0 ψ̃,( ) an ϕ0 ϕn,( )
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---eik r r'–( )⋅ 0=
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†an〈 〉

ψ̃

N N0–
N

---------------- ! 1.

scription provides a practical tool for calculations
under the assumption that almost all atoms are in the
condensed state. But breaking gauge symmetry is not
necessary for the validity of the Einstein criterion (7.7)
or Penrose criterion (7.12), that is, it is not necessary
for the existence of Bose–Einstein condensation.

It is also important to note that the Bogolubov pre-
scription (7.21) is not applicable for strongly interact-
ing particles whose interactions are described by non-
integrable potentials. Breaking gauge symmetry by this
prescription requires that the interatomic interactions
are given by an integrable potential Φ(r), such that

(7.30)

Here the integration is over finite V. This is necessary
since using the prescription (7.21) yields the appear-
ance in the Hamiltonian of the term

with nonoperator functions |ψ0(r)| and |ψ0(r')|. This
term diverges if the interaction potential does not sat-
isfy condition (7.30), hence, gauge symmetry cannot be
broken for such systems.

7.5. Condensation in Confined Systems

When atoms are confined in a box or by means of
external confining potentials, then all single-particle
functions ϕn(r) tend to zero, as r  ∞, because of
which the limit (7.20) of the first-order density matrix
is zero, which tells that there is no off-diagonal long-
range order. However, it is possible to weaken condi-
tion (7.20) considering, instead of the exact limit, an
asymptotic behavior at large r12, when the density
matrix can be approximately factorized as

(7.31)

which tells that there exists a kind of long-range order
[262, 263, 283]. The factorization (7.31) may appear if
the distance r12 is much larger than the mean inter-
atomic distance a, but much smaller than the effective
size l0 of the confined system, that is, in the region

(7.32)

The meaning of the inequality r12 @ a is evident, and
the inequality r12 ! l0 arises because the wave function
of a ground state is always more localized than the
wave functions of excited states. Consequently, at the
distance r12 ~ l0 the excited-state wave functions are
much larger than ϕ0, and the factorization (7.31), in
general, will not occur. Thus, in confined systems,
strictly speaking, there is no long-range order but there
can be quasilong-range order, when the density matrix
factorizes, as in Eq. (7.31), in the region (7.32).

Gauge symmetry in a confined system cannot be
broken. Thus, for employing the Bogolubov prescrip-
tion (7.21), one would need that the commutator

Φ r( ) rd∫ ∞.<

1
2
--- ψ0 r( ) 2Φ r r'–( ) ψ0 r'( ) 2 rd r',d∫

ρ1 r1 r2,( ) ϕ0 r1( )ϕ0* r2( ),∼

a ! r12 ! l0.
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[ψ0, ] be zero. However, this is not so. For instance,
expanding the field operator, according to Eq. (7.24),
over an oscillator basis, we have

from where

(7.33)

which is, certainly, not zero.
The absence of long-range order and of broken

gauge symmetry in confined systems is in agreement
with the known fact that there are no sharp phase tran-
sitions in such systems, although Bose–Einstein con-
densation can occur without being a sharp phase transi-
tion but a gradual crossover [41, 284–287]. During this
crossover all thermodynamic characteristics behave
smoothly and no discontinuities appear, although some
quantities can change very rapidly. Since all thermody-
namic characteristics change in a completely smooth
way, the identification of a specific critical temperature
is problematic. It is the standard situation for crossover
phenomena that the crossover temperature is not
uniquely defined, but its definition, anyway, can be
done by assigning the crossover temperature to the
maximum of one of thermodynamic functions
[288, 289]. In the case of Bose condensation in con-
fined systems, one can relate the condensation temper-
ature to the maximum of specific heat [41].

If gauge symmetry in confined systems is, strictly
speaking, never broken, is it then admissible to use the
Bogolubov prescription (7.21) in some approximate
sense? It seems that when the mean interatomic dis-
tance a is much smaller than the effective system size
l0, then the confined system could be treated as almost
infinite. For atoms confined, e.g., in a harmonic poten-
tial, the required inequality is

(7.34)

The effective volume of the confined system is V ~ ,
hence l0 ~ N1/3. Therefore, an admissible description of
the effective thermodynamic limit in this case could be

N  ∞, l0  ∞,   const. (7.35)

Because of the relation (7.34), ω0 ~ , thence ω0 ~ N–2/3.
Consequently, the thermodynamic limit (7.35) can be
presented as

N  ∞, ω0  0, N   const. (7.36)
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The ground-state wave function ϕ0 ~ , that is ϕ0 ~
N–1/2. Then the commutator (7.33) is

(7.37)

which shows that it is asymptotically zero, as N  ∞,
for any r1 and r2. This means that the Bogolubov pre-
scription (7.21) can have the sense of an approximate
relation for large confined systems satisfying condition
(7.34). A slightly different definition of the effective
thermodynamic limit for trapped atoms will be given in
Section 11. It is worth recalling that breaking gauge
symmetry is a sufficient condition for Bose–Einstein
condensation but not necessary [290]. The Einstein cri-
terion (7.7) or Penrose criterion (7.12) do not require
any broken symmetry. The occurrence of Bose–Ein-
stein condensation in a confined system, say in a trap,
can be noticed by observing the density of atoms,
which can be presented as the sum

(7.38)

where the first and second terms correspond to the den-
sity of atoms in a ground state and in excited states,
respectively,

(7.39)

According to the Einstein or Penrose criteria, conden-
sation happens when N0 ~ N, which does not involve
any mentioning of gauge symmetry. In experiments, the
occurrence of condensation is manifested by the
appearance of a narrow distribution ρ0(r) above the
wider (r). Because of the normalization

(7.40)

the ground-state density ρ0(r) becomes noticeable
when N0 ~ N. Although condensation in a trap is a grad-
ual crossover, the latter can be rather sharp reminding a
phase transition occurring at a point.

CHAPTER 8.
COHERENT ATOMIC STATES

One usually connects the occurrence of Bose–Ein-
stein condensation with the appearance of coherence in
an atomic system. This sounds reasonable since ine-
qualities (7.1) and (7.3) can be interpreted as the condi-
tions of coherence. In order to understand better the
relation between condensation and coherence, it is nec-
essary to give a rigorous definition of coherent states
and to study their main properties. This is done in the
following subsections that are based on [291].

l0
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8.1. Definition and Main Properties

We consider the field operators ψ(r) and ψ†(r) satis-
fying the Bose commutation relations and defined on
the Fock space ^. A state h ∈  ^ is called a coherent
state if it is an eigenvector of the annihilation operator

(8.1)

The function, η(r), playing the role of an eigenvalue,
can be called the coherent field. The latter is assumed to
be normalizable with the norm ||η|| ≡ (η, η) defined by
means of the scalar product

The coherent state h is not an eigenvector of the cre-
ation operator. But there is a useful property

(8.2)

that follows from the Hermitian conjugation of Eq. (8.1).
The state h, being a vector of the Fock space ^, is pre-
sentable as a column

(8.3)

From the definition (8.1) one can derive that

(8.4)

Requiring that the state (8.3) be normalized to unity,

(8.5)

where

one gets the normalization constant

Two different coherent states are not orthogonal since
the product

(8.6)

is not zero.

It is possible to introduce time-dependent coherent
states

(8.7)

ψ r( )h η r( )h.=

η η ',( ) η* r( )η' r( ) r.d∫≡

h+ψ† r( ) η* r( )h+=

h hk r1 r2 … rk, , ,( ) k 0 1 2 …, , ,={ } .=

hk r1 r2 … rk, , ,( )
C0

k!
-------- η r j( ).

j 1=

k

∏=

h+h hi hi,( )
i 1=

∞

∑ 1,= =

hi hi,( ) hi r1 r2 … ri, , ,( ) 2 r1d r2…d ri,d∫≡

C0
1
2
--- η η,( )–

 
 
 

.exp=

h+h'
1
2
--- η η,( )– η η ',( ) 1

2
--- η' η',( )–+

 
 
 

exp=

h t( ) Û t( )h=

by means of the evolution operator (t), which is a
unitary operator satisfying the Schrödinger equation

(8.8)

where H is a Hamiltonian depending, in general, on
time. The generalization of definition (8.1) is the eigen-
problem

(8.9)

Similarly to the time-independent case, one may derive
that h(t) has the structure of the column

(8.10)

The eigenproblem (8.9) can also be presented in the
form

(8.11)

involving the time-dependent field operator

(8.12)

If the evolution of the system is prescribed by the
Schrödinger equation (8.8), then the coherent field
η(r, t) is not arbitrary. Let us take the system Hamilto-
nian in the standard form

(8.13)

with the interaction potential Φ(–r) = Φ(r). The evolu-
tion prescribed by Eqs. (8.8) and (8.12) yields the
Heisenberg equation

which is also equivalent to the variational equation

With the Hamiltonian (8.13), the evolution equation for
the field operator (8.12) is

(8.14)

where

(8.15)

Û

i"
d
dt
-----Û t( ) HÛ t( ),=

ψ r( )h t( ) η r t,( )h t( ).=

h t( )
C0 t( )

k!
------------- η r j t,( )

j 1=

k

∏
 
 
 

.=

ψ r t,( )h η r t,( )h=

ψ r t,( ) Û
+

t( )ψ r( )Û t( ).=

H ψ† r t,( ) "
2—2

2m0
------------– U r t,( )+ ψ r t,( ) rd∫=

+
1
2
--- ψ† r t,( )ψ† r' t,( )Φ r r'–( )ψ r' t,( )ψ r t,( ) rd r',d∫

i"
∂
∂t
-----ψ r t,( ) ψ r t,( ) H,[ ] ,=

i"
∂ψ r t,( )

∂t
-------------------- δH

δψ† r t,( )
----------------------.=

i"
∂
∂t
-----ψ r t,( ) H ψ( )ψ r t,( ),=

H ψ( ) "
2—2

2m0
------------– U r t,( )+≡

+ Φ r r'–( )ψ† r' t,( )ψ r' t,( ) r'.d∫
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Multiplying Eq. (8.14) by h+ from the left and by h from
the right, and using definition (8.11), yields the evolu-
tion equation for the coherent field

(8.16)

with the effective nonlinear Hamiltonian

(8.17)

The nonlinear Schrödinger equation (8.16) is the exact
equation for the coherent field.

The norm of the coherent field has not yet been
specified and, in general, it can be arbitrary. It is conve-
nient to introduce the coherent field ϕ(r, t) normalized
to unity, so that

(8.18)

where κ is an arbitrary positive number and

Then Eqs. (8.16) and (8.17) are transformed to the non-
linear Schrödinger equation

(8.19)

with the nonlinear Hamiltonian

(8.20)

Notice that Eq. (8.19) has nontrivial solutions for the
coherent field only if the interaction potential is integra-
ble in the sense of condition (7.30). A system of parti-
cles with a nonintegrable interaction potential cannot
possess coherent states.

8.2. Stationary Coherent States

If the external potential U(r, t) = U(r) does not
depend on time, then the nonlinear Schrödinger equa-
tion (8.19) has stationary solutions of the form

(8.21)

in which ϕn(r) and En are defined by the eigenproblem

(8.22)

The stationary solutions ϕn labelled by a multi-index n
can be called coherent modes.

The Hamiltonian (8.20) is nonlinear, hence cannot
be Hermitian. Therefore the set of solutions {ϕn(r)} to
the eigenproblem (8.22) does not necessarily form a

i"
∂
∂t
-----η r t,( ) H η( )η r t,( ),=

H η( ) "
2—2

2m0
------------– U r t,( )+=

+ Φ r r'–( ) η r' t,( ) 2 r'.d∫

η r t,( ) κϕ r t,( ),≡

η η,( ) κ , ϕ ϕ,( ) 1.= =

i"
∂
∂t
-----ϕ r t,( ) Ĥ ϕ( )ϕ r t,( )=

Ĥ ϕ( ) "
2—2

2m0
------------– U r t,( )+≡

+ κ Φ r r'–( ) ϕ r' t,( ) 2 r'.d∫

ϕn r t,( ) ϕn r( ) i
"
---Ent– 

  ,exp=

Ĥ ϕn( )ϕn r( ) Enϕn r( ).=

complete orthonormal basis. Actually, even in the case
of a Hermitian operator in an infinite-dimensional
space, the set of its eigenvectors does not always form
such a basis [292, 293], contrary to the case of Hermi-
tian operators in finite-dimensional spaces.

Nonlinear eigenproblems are usually solved by an
iterative procedure, as it is done for self-consistent
mean-field problems like Hartree or Hartree–Fock
equations [294, 295]. In the process of such solutions it
is often possible to preserve the orthogonality of eigen-
vectors, at least approximately in the sense of the ine-
quality

The latter, because of Eq. (8.22), is equivalent to the
condition

if m ≠ n and ϕ ≡ (ϕ)ϕ. Here, with the Hamiltonian
(8.20), we have

Thus, the set {ϕn}, in general, is not orthogonal
although can often be made quasiorthogonal, so that
|(ϕm, ϕn)| ! 1 if m ≠ n. The modes ϕn can always be nor-
malized to ||ϕn|| = 1.

One may notice that the eigenproblem (8.22), with
the Hamiltonian (8.20), defines the coherent modes up
to a phase factor eiα with an arbitrary real phase α.
Therefore, the general solution of the eigenproblem
(8.22) writes

(8.23)

The phase α is an unobservable random variable uni-
formly distributed in the interval [0, 2π), which has to
be averaged over when evaluating the expectation val-
ues of observables [296–298]. The random global
phase α should not be confused with a local phase of
the coherent mode ϕn, which can arise in the process of
solution of the eigenproblem (8.22) and which is deter-
mined by this eigenproblem.

Keeping all numbers κ, n, and α fixed, we have a
pure coherent mode

(8.24)

Then, Eqs. (8.3) and (8.4) define a pure coherent state

(8.25)

ϕm ϕn,( )  ! 1, m n.≠

Ĥϕm ϕn,( ) ϕm Ĥϕn,( )–  ! Em En– ,

Ĥ Ĥ

Ĥϕm ϕn,( ) ϕm Ĥϕn,( )–

=  κ ϕ m* r( )Φ r r'–( ) ϕm r'( ) 2 ϕn r'( ) 2–[ ]ϕ n r( ) rd r'.d∫

ϕnα r( ) ϕn r( )eiα 0 α 2π≤ ≤( ).=

ηκnα κϕ n r( )eiα .=

hκnα
C0

k!
-------- ηκnα r j( )

j 1=

k

∏
 
 
 

,=
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in which

The pure coherent states are not orthogonal since

(8.26)

But they are asymptotically orthogonal if either κ  ∞
or κ'  ∞. For example, if the pure coherent modes
(8.24) are normalized to the number of particles N =
κ = κ', then the product (8.26) is

(8.27)

This shows that two different pure states, for which
either n ≠ n' or α ≠ α', are asymptotically orthogonal in
the sense of the limit

(8.28)

Thus, the set {hNnα} of pure coherent states forms a nor-
malized asymptotically, with respect to N  ∞,
orthogonal basis. This basis is asymptotically, as N  ∞,
complete providing the resolution of unity

(8.29)

The latter equality is to be understood in the weak sense
as an equality for the matrix elements

(8.30)

Hence the set {hNnα} can be treated as an asymptotically
complete and orthonormalized basis, when N  ∞.

8.3. Quantum Coherent Averages

For an operator , we can define the pure coherent
average

(8.31)

with respect to the pure coherent states (8.25). Thus for
the field operator, one has

(8.32)

which tells us that the usage of pure coherent states
breaks gauge symmetry. The first-order density matrix
factorizes as

(8.33)

For the particle density operator

C0
1
2
---κ– 

  .exp=

hκnα
+ hκ 'n'α'

=  
1
2
--- κ κ '+( )– κκ ' ϕn ϕn',( )e i α α '–( )–+

 
 
 

.exp

hNnα
+ hNn'α' N– ϕn ϕn',( )Nei α' α–( )+{ } .exp=

hNnα
+ hNn'α'

N ∞→
lim δnn'δαα ' .=

hNnαhNnα
+

 . 1̂ N ∞( ).
n

∑

hNnα
+ 1̂hNn'α' . δnn'δαα ' N ∞( ).

Â

Â〈 〉 κnα hκnα
+ Âhκnα≡

ψ r( )〈 〉 κnα κϕ n r( )eiα ,=

ψ† r( )ψ r'( )〈 〉 κnα ψ† r( )〈 〉 κnα ψ r'( )〈 〉 κnα .=

n̂ r( ) ψ† r( )ψ r( ),≡

one gets

(8.34)

And the density-density correlation function is

(8.35)

This function, in general, is not factorized. However,
there is no great sense to consider correlations at one
point. It is meaningful to consider the correlations only
for r ≠ r'. In the latter case, the correlation function (8.35)
is factorized.

The average number of particles is

(8.36)

And the average of the Hamiltonian (8.13) writes

(8.37)

where a stationary external potential is assumed.
Employing the eigenproblem (8.22), the average
energy (8.37) can be rewritten in two other forms,

(8.38)

As has been explained above, the phase α in the
coherent modes (8.23) and (8.24) is an unobservable
random variable that has to be averaged out when cal-
culating the expectation values of operators. This
means that the pure coherent averages (8.31), strictly
speaking, do not correspond to observable quantities.
The latter are to be defined as the averages over the ran-
dom-phase coherent state [296]

(8.39)

being the set of all pure states hκnα, with the random
variable α. The corresponding coherent average is

(8.40)

Then, for instance, for the field operator one has

(8.41)

which shows that for the coherent state (8.39) gauge
symmetry is not broken. This sounds rather reasonable
since the field operator does not pertain to the algebra
of observables [291, 299]. One more reason for the
absence of broken gauge symmetry is that Eq. (8.41) is

n̂ r( )〈 〉 κnα κ ϕ n r( ) 2.=

n̂ r( )n̂ r'( )〈 〉 κnα

=  n̂ r( )〈 〉 κnα n̂ r'( )〈 〉 κnα δ r r'–( ) n̂ r( )〈 〉 κnα .+

N̂〈 〉 κnα κ , N̂ n̂ r( ) r.d∫≡=

H〈 〉 κnα κ ϕ n* r( ) "
2—2

2m0
------------ U r( )+– ϕn r( ) rd∫=

+
κ2

2
----- ϕn r( ) 2Φ r r'–( ) ϕn r'( ) 2 rd r',d∫

H〈 〉 κnα κ En
κ2

2
----- ϕn r( ) 2Φ r r'–( ) ϕn r'( ) 2 rd r',d∫–=

H〈 〉 κnα
1
2
---κ En

κ2

2
----- ϕn* r( ) "

2—2

2m0
------------– U r( )+ ϕn r( ) r.d∫+=

hκn hκnα α 0 2π, )[∈{ }≡

Â〈 〉 κn
1

2π
------ Â〈 〉 κnα α .d

0

2π

∫≡

ψ r( )〈 〉 κn 0,=
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in agreement with the conservation of the number of
particles [300]. The absence of broken gauge symmetry
does not preclude the first-order density matrix from
being factorized as

(8.42)

But the form (8.33) does not hold true,

(8.43)

because of Eq. (8.41).

The operators  pertaining to the algebra of
observables contain the products of even numbers of
field operators, with equal numbers of creation and
annihilation operators. Therefore, for such operators, the
coherent averages (8.40) coincide with the pure averages
(8.31). For example, the average particle density

is the same as the density (8.34). The density-density
correlation function

(8.44)

is analogous to that of (8.35). Again considering the
correlations for different points r ≠ r', we see that the
correlator (8.44) factorizes. One may also notice that
the second term in the right-hand side of Eq. (8.44) can
be omitted when κ @ 1, since on average it is much
smaller than the first term. This follows from the inte-
gration

For any two operators (r) and (r'), the correlator
defined through the coherent average (8.40) always fac-
torizes if r ≠ r'. When both these operators pertain to
the algebra of observables, the factorization takes the
form

(8.45)

if r ≠ r'. However, if one of these operators is not from
the algebra of observables, then the correlator does not
have the form (8.45), although the factorization does
occur. For instance, the density matrix (8.42) is factor-
ized, though ϕn(r) is not proportional to 〈ψ(r)〉κn, which
is zero according to Eq. (8.41). The factorization prop-
erties of the coherent averages (8.40) are not connected
with gauge symmetry breaking. The latter occurs only
for the pure average (8.31), with a fixed global phase.
However, to fix a phase that is random and cannot be
measured looks unphysical.

ψ† r( )ψ r'( )〈 〉 κn κϕ n* r( )ϕn r'( ).=

ψ† r( )ψ r'( )〈 〉 κn ψ† r( )〈 〉 κn ψ r'( )〈 〉 κn,≠

Â

n̂ r( )〈 〉 κn κ ϕ n r( ) 2=

n̂ r( )n̂ r'( )〈 〉 κn

=  n̂ r( )〈 〉 κn n̂ r'( )〈 〉 κn δ r r'–( ) n̂ r( )〈 〉 κn+

n̂ r( )n̂ r'( )〈 〉 κn rd r'd∫ κ2 κ .+=

Â B̂

Â r( )B̂ r'( )〈 〉 κn Â r( )〈 〉 κn B̂ r'( )〈 〉 κn,=

8.4. Statistical Coherent Averages

For a system of many particles, statistical state is
presented by a given statistical operator  defining the
expectation values of operators as statistical averages

(8.46)

Since the trace operation does not depend on the chosen
basis, we may take for this purpose the basis {hκnα} of
the coherent states (8.25). Then the statistical average
(8.46) is presented as

(8.47)

where 〈…〉κnα is the pure coherent average (8.31). For
an equilibrium statistical state, the Gibbs statistical
operator is

(8.48)

where β ≡ (kBT)–1 and the chemical potential µ can be

found from the condition  = N. The statistical oper-
ator (8.48) represents the grand canonical Gibbs
ensemble.

In the thermodynamic limit, N  ∞, the coherent
states become sharply peaked around the average num-
ber of particles [301]. If we make a reasonable assump-
tion that, integrating over the norm κ ≡ ||η|| in the aver-
age (8.47), the main contribution, when N  ∞,
comes from the term with κ = N, then the value (8.47)
is asymptotically close to the statistical coherent aver-
age

(8.49)

defined as a trace over the restricted Hilbert space

(8.50)

being a linear envelope of the coherent basis {hNnα}.
Since the observable quantities

(8.51)

do not depend on the unobservable random phase α,
and because of the asymptotic orthogonality (8.28), the
average (8.49) can be written as

(8.52)

with the coherent statistical weight

(8.53)

ρ̂

Â〈 〉 Tr ρ̂Â.=

Â〈 〉 ρ̂ Â〈 〉 κnα κd α ,d

0

2π

∫
0

∞

∫
n

∑=

ρ̂ β H µN̂–( )–{ }exp

Tr β H µN̂–( )–{ }exp
-----------------------------------------------------,=

N̂〈 〉

Â〈 〉 N ρ̂Â〈 〉 Nnα αd

0

2π

∫
n

∑≡

*N + hNnα{ }≡

N̂〈 〉 Nnα N , H〈 〉 Nnα ENn≡=

Â〈 〉 N  . ρNn Â〈 〉 Nn,
n

∑

ρNn

βENn–( )exp

βENn–( )exp
n

∑
-------------------------------------≡
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and with the coherent average

(8.54)

The averaged field operator is zero,

(8.55)

showing that gauge symmetry is not broken. The den-
sity matrix

(8.56)

does not factorize as well as the density-density corre-
lation function

(8.57)

But as temperature tends to zero, and β  ∞, then the
system tends to the ground-state energy level

(8.58)

so that the weight (8.53) becomes

ρNn  δn0 (β  ∞). (8.59)

Then the correlators (8.56) and (8.57) asymptotically
factorize. For example, the density-density correlator is

when β  ∞. The atom density

can be written as

(8.60)

At high temperatures, when the first term in Eq. (8.60)
is negligible, one may say that the system is in thermal
state. The temperature Tc, at which the coherent first
term becomes noticeable, characterizes the transition to
the coherent state. Since the ground-state wave func-
tion is better localized in space than the wave functions
of excited modes, the increase of the first term in the
sum (8.60) can be noticed as the appearance of a narrow
space distribution above the wide thermal cloud
described by the second term. With lowering tempera-
ture below Tc, the sharp coherent peak described by the
first term grows while the wide thermal distribution
corresponding to the second term diminishes. At zero
temperature, all atoms are concentrated in the ground-
state coherent mode. In this way, Bose–Einstein con-
densation can be understood as a transition of atoms
from excited single-state coherent modes to the
ground-state coherent mode.

Â〈 〉 Nn
1

2π
------ Â〈 〉 Nnα α .d

0

2π

∫≡

ψ r( )〈 〉 N 0,=

ψ† r( )ψ r'( )〈 〉 N  . N ρNnϕn* r( )ϕn r'( )
n

∑

n̂ r( )n̂ r'( )〈 〉 N  . N2 ρNn ϕn r( ) 2 ϕn r'( ) 2.
n

∑

EN0 ENn,
n

min≡

n̂ r( )n̂ r'( )〈 〉 N  . n̂ r( )〈 〉 N n̂ r'( )〈 〉 N ,

n̂ r( )〈 〉 N  . N ρNn ϕn r( ) 2

n

∑

n̂ r( )〈 〉 N  . NρN0 ϕ0 r( ) 2 N ρNn ϕn r( ) 2.
n 0≠
∑+

Note that the coherent states (8.25) and (8.39) are
not the eigenvectors of the system Hamiltonian (8.13).
However, this does not preclude the statistical average
(8.46) from satisfying the limiting relation

And there is no contradiction between the many-parti-
cle coherent states (8.25) or (8.39) not being the eigen-
vectors of the system Hamiltonian and the ability of
atoms to condense into a single-particle coherent
mode (8.23).

8.5. Correlation Functions and Coherence

As follows from the previous subsection, an equilib-
rium system of atoms can become totally coherent only
in the thermodynamic limit at zero temperature. At
finite temperatures or for a finite number of particles, a
system of atoms can be only partially coherent. Since
the level of coherence is directly related to the strength
of correlations between atoms, this level can be charac-
terized by the behavior of correlation functions.

The simplest correlation function is the dimension-
less first-order density matrix

(8.61)

where ρ(r) ≡ . This function has the properties

Averaging over the coherent states hNn according to the
definition (8.40), we have

(8.62)

and the density matrix writes

(8.63)

Hence, if the average in the function (8.61) is assumed
as the coherent average (8.40), then

|C(r, r')| = 1 (coherence) (8.64)

for all r and r'. But for the statistical average (8.46), in
general,

(8.65)

with the equality occurring only for r = r'.
An effective radius characterizing the length of

strong correlations between atoms defines the coher-
ence radius

(8.66)

  
1

 
N

 ---- A ˆ 〈 〉 
β ∞→

 lim  
N

 
∞→

 lim
1

 
N

 ---- A ˆ 〈 〉 N 0 . 
N

 
∞→

 lim=

C r r',( ) ψ† r( )ψ r'( )〈 〉
ρ r( )ρ r'( )

---------------------------------,≡

n̂ r( )〈 〉

C* r r',( ) C r' r,( ), C r r,( ) 1.= =

ψ r( )〈 〉 Nn 0;=

ψ† r( )ψ r'( )〈 〉 Nn Nϕn* r( )ϕn r'( ).=

C r r',( ) 1,≤

rcoh

r C 0 r,( ) rd∫
C 0 r,( ) rd∫

--------------------------------.≡
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If this radius is less than or comparable with the mean
interatomic distance,

rcoh ≤ a (chaos), (8.67)

then atoms are not correlated, which can be ascribed to
chaotic behavior. When the coherence radius is much
larger than the distance a but much smaller than the lin-
ear size of the system,

a ! rcoh ! L (local coherence), (8.68)

then a large number of atoms are mutually correlated,
although this number is much smaller than the total
number of atoms in the system. And when the coher-
ence radius is of the order of the system size,

rcoh ~ L (global coherence), (8.69)

then almost all atoms in the system are correlated and
practically all particles condense into a coherent mode.
The correlation function (8.61) describes the property
of the system, which is called first-order coherence.

The correlation function

(8.70)

characterizes second-order coherence. If the average
here is defined as the coherent average (8.40), then

C2(r1, r2) = 1 (coherence) (8.71)

for any r1 and r2. The opposite case corresponds to the
statistical average (8.46) under the condition that parti-
cles are not correlated, so that the average in Eq. (8.70)
can be simplified using the Wick decomposition. The
latter yields

C2(r1, r2) = 1 + |C(r1, r2)|2 (chaos). (8.72)

For this chaotic state,

C2(r1, r2) > 1 (chaos). (8.73)

Combining Eqs. (8.71) and (8.72), for the coinciding
arguments we have

(8.74)

Similarly, the third-order coherence is described by the
correlation function

(8.75)

In the case of the coherent average (8.40),

C3(r1, r2, r3) = 1 (coherence). (8.76)

C2 r1 r2,( )
ψ† r1( )ψ† r2( )ψ r2( )ψ r1( )〈 〉

ρ r1( )ρ r2( )
-------------------------------------------------------------------≡

C2 r r,( )
1, coherence

2, chaos.



=

C3 r1 r2 r3, ,( )

≡
ψ† r1( )ψ† r2( )ψ† r3( )ψ r3( )ψ r2( )ψ r1( )〈 〉

ρ r1( )ρ r2( )ρ r3( )
--------------------------------------------------------------------------------------------------.

While for the statistical average (8.46), under the
assumption that atoms are not correlated, one may
employ the Wick decomposition resulting in

(8.77)

In the two opposite cases, we get

(8.78)

The same way can be followed for characterizing
higher-order coherence by means of the correlation
function Ck(…) defined analogously to Eqs. (8.70) and
(8.75). For the coinciding arguments, one finds

(8.79)

One may notice that, if the system is coherent, this is
reflected in the correlators of all orders, so that

Ck(r1, r2, …, rk) = 1 (coherence).

Thence, it is not compulsory to distinguish between dif-
ferent orders of coherence, but it is sufficient to use just
one word “coherence.” In the intermediate case, when
there is neither complete coherence nor pure chaos, the
properties of correlators of different orders can be dif-
ferent. Then one could distinguish between different
orders of particle correlations.

Correlation functions can be defined not only for
field operators but also for any operators. The correlator

for two operators of local observables, (r) and (r),
satisfies an important limiting property

(8.80)

when r12  ∞, which is called the principle of corre-
lation weakening [300, 302]. This property holds only
when both operators represent local observables. Since
the field operators do not correspond to observable
quantities, the correlator 〈ψ†(r1)ψ(r2)〉 does not need to
be factorized into the product 〈ψ†(r1)〉〈ψ (r2)〉, as
r12  ∞, although it may factorize in a different form,
as in Eq. (8.42).

CHAPTER 9.
MEANING OF GROSS–PITAEVSKII EQUATION

The nonlinear Schrödinger equation (8.19) is an
exact equation defining the coherent field ϕ(r, t) that
can also be called the coherent wave function. In the
nonlinear Hamiltonian (8.20), one has to specify the
external potential U and the interaction potential Φ. For
trapped atomic gases, these potentials are usually mod-
elled as a harmonic confining potential and a contact
Fermi potential, respectively [30, 31]. This concretiza-

C3 r1 r2 r3, ,( ) 1 C r1 r2,( ) 2 C r2 r3,( ) 2+ +=

+ C r3 r1,( ) 2 2 Re C r1 r2,( )C r2 r3,( )C r3 r1,( ).+

C3 r r r, ,( )
1, coherence

3!, chaos.



=

Ck r r … r, , ,( )
1, coherence

k!, chaos.



=

Â B̂

Â r1( )B̂ r2( )〈 〉  . Â r1( )〈 〉 B̂ r2( )〈 〉 ,
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tion is given below, where we also discuss the differ-
ence between the exact equation (8.19) for the coherent
wave function and some approximate equations for
broken-symmetry order parameter introduced by
means of the Bogolubov prescription (7.21). For con-
creteness, we set the normalization parameter κ = N.

9.1. Coherent Wave Function

The external potential U(r, t) in the nonlinear
Hamiltonian (8.20) may, in general, consist of two
terms, one describing a stationary trapping potential
that is due to the trap used and another term corre-
sponding to time-dependent perturbation superimposed
on the stationary part. The trapping potential is usually
modelled by a harmonic oscillator,

(9.1)

with the frequencies defined by the confining fields of
the trap.

The density of trapped gases is always small, so that
the effective range of the two-body potential describing
interatomic interactions is much smaller compared to
the interparticle distance a ~ ρ–1/3. Then the interatomic
potential can be assumed to act locally and be charac-
terized entirely by the s-wave scattering length as
[303−305]. This means that, under the condition

(9.2)

the interaction potential can be presented in the Fermi
form

(9.3)

In typical experiments with 87Rb and 23Na, one reaches
the density ρ ~ 1014 cm–3, the scattering length being

as ~ 5 × 10–7 cm, hence as/a ~ 10–2 and  ~ 10–5. In
the case of 7Li, one has ρ ~ 1012 cm–3, with the scatter-
ing length as ~ –10–7 cm, so that |as |/a ~ 10–3 and
ρ|as |3 ~ 10–9. In the Bose–Einstein condensation of
atomic hydrogen [99], the density of condensed atoms
is ρ ~ 2 × 104 cm–3, while the scattering length of H is

as ~ 6.5 × 10–9 cm, from where as/a ~ 10–4 and  ~
10–10. Thus, inequalities (9.2) always hold true.

With the trapping potential (9.1) and the interaction
potential (9.3), we get the nonlinear Hamiltonian

(9.4)

U r( )
m0

2
------ ωx

2
x

2 ωy
2
y

2 ωz
2
z

2
+ +( ),=

as

a
------- ! 1, ρ as

3
 ! 1,

Φ r( ) Aδ r( ), A 4π"
2 as

m0
------.≡=

ρas
3

ρas
3

Ĥ ϕ( ) "
2—2

2m0
------------– U r( ) NA ϕ 2

.+ +=

Then Eq. (8.19) for the coherent wave function takes
the form

(9.5)

where  = (r, t) is a time-dependent perturbation
potential.

From the mathematical point of view, Eq. (9.5) is a
nonlinear Schrödinger equation. This is an exact equa-
tion for the coherent wave function. Similar equations
can be derived in the mean-field approximation for the
order parameter associated with the condensate [31]. In
the latter case, one calls such equations Gross–
Ginzburg–Pitaevskii equation or Gross–Pitaevskii
equation, since such equations were considered by
these authors [306–310].

9.2. Condensate Order Parameter

The order parameter associated with the Bose–Ein-
stein condensate is commonly defined as

(9.6)

that is, as the statistical average of a field operator. This
definition implies that Bose–Einstein condensation is
accompanied by broken gauge symmetry, which is usu-
ally done by means of the Bogolubov prescription (7.21).
Substituting the Bogolubov-shifted field operator ψ =
ψ0 +  into the Heisenberg equation (8.14), and aver-
aging the latter, one has

(9.7)

where the dependence of functions on the space-time
variables r and t, for brevity, is dropped.

Equation (9.7) for the condensate order parameter
(9.6) is exact. However, it is too complicated to be use-
ful. To simplify it, one may invoke the mean-field
approximation

which, because of 〈 〉  = 0 yields

Then Eq. (9.7) for the order parameter slightly simpli-
fies becoming

(9.8)

which corresponds to the Hartree–Fock–Bogolubov
approximation.

i"
∂ϕ
∂t
------ Ĥ ϕ( ) V̂+[ ]ϕ ,=

V̂ V̂

ψ0 r t,( ) ψ r t,( )〈 〉 ,≡

ψ̃

i"
∂
∂t
-----ψ0

"
2—2

2m0
------------– U+ 

  ψ0 A ψ0
2ψ0(+=

+ 2 ψ̃†ψ̃〈 〉ψ 0 ψ̃ψ̃〈 〉ψ 0* ψ̃†ψ̃ψ̃〈 〉+ + ),

ψ̃†ψ̃ψ̃〈 〉 ψ̃ †〈 〉 ψ̃ ψ̃〈 〉 2 ψ̃†ψ̃〈 〉 ψ̃〈 〉 ,+≅

ψ̃

ψ̃†ψ̃ψ̃〈 〉 0.=

i"
∂
∂t
-----ψ0

"
2—2

2m0
------------– U+ 

  ψ0=

+ A ψ0
2ψ0 2 ψ̃†ψ̃〈 〉ψ 0 ψ̃ψ̃〈 〉ψ 0*+ +( ),
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Sometimes one makes an ad hoc assumption that
the anomalous averages 〈 〉  are much smaller than

the normal ones 〈 〉 . Then, dropping the former in
Eq. (9.8), one comes to the Popov approximation

(9.9)

considered first by Popov [311].
The Hartree–Fock–Bogolubov approximation is

self-consistent; however, it leads to the appearance of a
gap in the spectrum of elementary excitations [312].
Since in reality there is no gap, this approximation is
not satisfactory. The Popov approximation yields a
gapless spectrum of elementary excitations; but this
approximation is not self-consistent because the
anomalous averages 〈 〉  are, in general, of the order
of or even much larger than the normal averages [312,
313], thus, 〈 〉  cannot be neglected when gauge sym-
metry is broken. Moreover, the Popov approximation is
unstable with respect to the formation of vortices with
negative energy [312]. Therefore, the Popov approxi-
mation also cannot be accepted as satisfactory.

As discussed in subsection 7.4, the Bogolubov pre-
scription (7.21) is meaningful under the assumption of
small depletion of condensate, which is expressed by
inequality (7.29). In the extreme case, one may assume
that all particles are condensed, so that all the averages

〈 〉  as well as 〈 〉  can be omitted. Neglecting all
these averages, corresponding to noncondensed atoms,
is often termed the Bogolubov approximation. Then
Eq. (9.8) becomes

(9.10)

It is this approximate equation (9.10) for the order
parameter (9.6) which is commonly called the Gross–
Pitaevskii equation. If, similarly to Eq. (8.18), we
change the normalization of the order parameter by
means of the replacement

then Eq. (9.10) takes the same form as Eqs. (8.19) or
(9.5) for the coherent wave function. The difference is
that the nonlinear Schrödinger equation (9.5) is an
exact equation for the coherent wave function, while
Eq. (9.10) is an approximate equation for the conden-
sate order parameter. Equation (9.5) exists irrespec-
tively of whether gauge symmetry is broken or not,
while Eq. (9.10) presupposes broken gauge symmetry.
The mathematical structure of both Eqs. (9.5) and
(9.10) is the same, being that of the nonlinear
Schrödinger equation. What is different is their physi-
cal interpretation. However, it is admissible to accept a

ψ̃ψ̃

ψ̃†ψ̃

i"
∂
∂t
-----ψ0

"
2—2

2m0
------------– U+ 

  ψ0=

+ A ψ0
2

2 ψ̃†ψ̃〈 〉+( )ψ0,

ψ̃ψ̃

ψ̃ψ̃

ψ̃ψ̃ ψ̃†ψ̃

i"
∂
∂t
-----ψ0

"
2—2

2m0
------------– U A ψ0

2
+ + 

  ψ0.=

ψ0 r t,( ) Nϕ0 r t,( ),=

generalized point of view and to define the Gross–
Pitaevskii equation as a nonlinear Schrödinger equation
describing a system of Bose atoms, irrespectively of the
interpretation of the solution to this equation.

9.3. General Anisotropic Case

To study the properties of the Gross–Pitaevskii
equation, it is convenient to introduce some notations
simplifying the following consideration. When all fre-
quencies in the trapping potential (9.1) are different, we
have the general anisotropic case. With the help of the
effective frequency

(9.11)

we may define the dimensionless frequencies

(9.12)

From these definitions, one has the property

(9.13)

The oscillator length

(9.14)

characterizes an effective size of the trap. This length is
used for defining the dimensionless variables

(9.15)

instead of the dimensional Cartesian vector r = {rx, ry, rz}.
The dimensionless coupling parameter

(9.16)

describes the intensity of interactions between atoms in
coherent state. Introducing the dimensionless nonlinear
Hamiltonian

(9.17)

and the coherent wave function

(9.18)

we have

(9.19)

The eigenproblem (8.22) reduces to the form

(9.20)

ω0 ωxωyωz( )1/3
,≡
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ω0
------, ω3
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ω0
------.≡ ≡ ≡
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----≡ ≡ ≡

g 4π
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l0
----N≡

Ĥ
Ĥ ϕ( )
"ω0

-------------≡

ψ x( ) l0
3/2ϕ r( ),≡

Ĥ
1
2
--- ∂2
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∑ g ψ 2
.+=

Ĥψn x( ) Enψn x( ),=
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where the energy En is measured in units of ω0. The
eigenfunction is assumed to satisfy the normalization

in which the integral is evaluated over the whole
domain of x = {x1, x2, x3}.

9.4. Cylindrically Symmetric Trap

When the trapping potential (9.1) is cylindrically
symmetric, so that the transverse radial frequencies are
equal,

(9.21)

and the axial-to-radial asymmetry is described by the
parameter

(9.22)

then it is convenient to introduce the following nota-
tion. The radial oscillator length

(9.23)

serves to define the dimensionless cylindrical variables

(9.24)

Then one may define the dimensionless coherent wave
function

(9.25)

depending on the cylindrical variables r ∈  [0, ∞),
ϕ ∈  [0, 2π], z ∈  (–∞, +∞), and the Hamiltonian

(9.26)

The atom–atom coupling parameter now is

(9.27)

The Hamiltonian (9.26) writes

(9.28)

where

In the eigenvalue problem

(9.29)

ψn ψn,( ) ψn x( ) 2 xd∫≡ 1,=

ωx ωy ωr,= =

ν
ωz
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Ĥ
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1
r
--- ∂

∂r
----- 1

r
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---- ∂2

∂ϕ2
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∂z
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-------.+ + +=

Ĥψn Enψn,=

the energy En is measured in units of ωr and the eigen-
function ψn = ψn(r, ϕ, z) is normalized by the condition

(9.30)

It is worth recalling here that the Hamiltonian (9.28) is
nonlinear and, thus, non-Hermitian. Thence, the set
{ψn} of the coherent modes being the solutions of the
eigenproblem (9.29) does not necessarily form a com-
plete basis. And, in general, the set {ψn} is not
orthogonal. In particular, the eigenfunctions of non-
Hermitian linear operators can form complete bi-
orthonormal bases [314–317]. The situation with non-
linear operators is more complicated: As there are no
general theorems, the completeness of the eigenfunc-
tion set is to be analyzed separately for each concrete
case. For some one-dimensional problems with nonlin-
ear Schrödinger Hamiltonians the completeness of the
eigenfunction set has been proved [318, 319].

9.5. Thomas–Fermi Ground State

In many cases, one is interested not in the whole set
of stationary states ψn but solely in the ground state, ψ0,
corresponding to the minimal energy E0. There exists a
simple approximation that is very often used for
describing the ground state of trapped atoms. This is the
Thomas–Fermi approximation that is valid in the
asymptotic limit of strong coupling parameter g  ∞.
Then one neglects the kinetic term as compared to the
potential term containing g, which reduces the differen-
tial Schrödinger equation to an algebraic equation.

Thus, considering the general anisotropic case, one
neglects in the Hamiltonian (9.19) the kinetic differen-
tial operator

Then, Eq. (9.20) yields the wave function in the Tho-
mas–Fermi approximation

(9.31)

where Θ(·) is the unit-step function and

(9.32)

The energy ETF is defined from the normalization
(ψTF , ψTF) = 1. Unfortunately, there is a serious defect
in the wave function (9.31), since the average kinetic
energy

logarithmically diverges.
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In the cylindrically symmetric case, with the Hamil-

tonian (9.28), omitting the term – , we find the

wave function

(9.33)

where rc is given by Eq. (9.32) and the energy ETF is to
be obtained from the normalization (9.30), which
yields

(9.34)

The average kinetic energy is again logarithmically
divergent.

The Thomas–Fermi approximation is often used
because of its simplicity. However, this approximation
has several deficiencies:

First of all, as is evident from the form of the func-
tion ψTF containing a unit-step function, this approxi-
mation cannot correctly describe the edge of the atomic
cloud, since the Thomas–Fermi density |ψTF |2 has a
sharp boundary at rc , while in reality the density is to be
smooth [320].

Second, this approximation is not self-consistent as
far as the Thomas–Fermi energy ETF is defined from the
normalization ||ψTF ||2 = 1. But if one retains the kinetic

term in  then

(9.35)

not even approximately. And, moreover, the average

energy (ψTF , ) has no sense because of the diver-
gence of the average kinetic energy.

Third, this approximation is applicable for describ-
ing only the ground state but does not permit the con-
sideration of other coherent stationary states of the
eigenvalue problem.

Fourth, the approximation does not make a distinc-
tion between repulsive and attractive forces, that is,
between positive and negative coupling parameters g.
However, in the case of attractive interatomic forces,
there should exist a critical value gc < 0, such that for
g < gc the system becomes unstable [30, 31], which can
be manifested in the energy becoming negative or com-
plex.

Fifth, for the time-dependent equation (9.5), the
Thomas–Fermi approximation gives a solution that is
unstable with respect to small perturbations [321].

CHAPTER 10.
SPECTRUM OF COHERENT MODES

Coherent modes are defined by the eigenproblem
(8.22). For trapped atoms, the nonlinear Hamiltonian is
given by Eq. (9.4), with the trapping potential (9.1).

1
2
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ψTF r z,( ) = 
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2
r

2
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2/5

0.536689 gν( )2/5
.= =

Ĥ

ψTF ĤψTF,( ) ETF,≠

ĤψTF

This nonlinear eigenproblem cannot be solved exactly.
The standard perturbation theory starting with a har-
monic-oscillator approximation cannot be employed
since the coupling parameter (9.16), or (9.27), can be
very large because of large N @ 1. The Thomas–Fermi
approximation, as discussed in Section 9.5, can give an
estimate only for the ground-state energy, with g  ∞.
How would it be possible to find accurate approximate
expressions for the whole spectrum of coherent modes
and for arbitrary values of the coupling parameter? This
can be achieved by means of the self-similar approxi-
mation theory whose simplest variant, called optimized
perturbation theory, is outlined in the following section.

10.1. Optimized Perturbation Theory

Let us be interested in a function E(g) of a coupling
parameter g. We keep in mind that E(g) = E(g, n) is an
energy level but, for brevity, the dependence on the set
of quantum numbers n is not written down explicitly.

If one invokes the standard perturbation theory,
valid for small coupling parameters, one gets a sequence
{pk(g)} of perturbative approximations pk(g), with k =
0, 1, 2, …, implying approximation orders, so that

(10.1)

However, the perturbative sequence {pk(g)} is usually
divergent for any finite value of g. Moreover, the cou-
pling parameter g is often not small, for which case the
perturbative sequence {pk(g)} cannot in principle pro-
vide reasonable approximations.

In order to make perturbation theory meaningful,
one has to change the theory so that the resulting per-
turbative sequence be convergent. This can be done by
introducing control functions that are so called because
of their role of controlling convergence. Then, instead
of a divergent sequence {pk(g)}, one would get a con-
vergent sequence {Ek(g, uk)}, whose convergence is
governed by control functions uk = uk(g). The idea of
introducing control functions for making a perturbative
sequence convergent was advanced first in [322]. The
introduction of control functions can be done in differ-
ent ways. A straightforward way is to start perturbation
theory with an initial approximation containing a set of
trial parameters u. The latter are then transformed into
functions uk(g) such that the sequence {ek(g)} of the
terms

(10.2)

becomes convergent. Perturbation theory reorganized,
in this or that way, by introducing control functions
[322] has been successfully applied to a variety of
problems in quantum mechanics, statistical physics,
and field theory [322–342]. The so reorganized pertur-
bation theory is called by different authors differently,
for instance, as optimized perturbation theory, con-
trolled perturbation theory, modified perturbation the-
ory, renormalized perturbation theory, oscillator-repre-

E g( ) . pk g( ) g 0( ).

ek g( ) Ek g uk g( ),( )≡
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sentation method, delta expansion, and so on. The
method of potential envelopes [343–345] is also close
to this approach. More references can be found in
reviews [346–349].

It is only in a few simplest cases, such as zero- and
one-dimensional anharmonic oscillators [350–352],
when control functions can be chosen from the direct
observation of convergence. Contrary to this, the stan-
dard situation is when perturbative terms of arbitrarily
large orders are not available. Vice versa, for realistic
problems, one usually is able to find just a couple of
perturbative terms. Because of this, one usually defines
control functions by invoking some heuristic reasons.

The foundation for the choice of control functions
can be done in the frame of the self-similar approxima-
tion theory [353–362]. These functions are to be chosen
so that they provide the optimal convergence, which
means that convergence is as fast as possible. Such an
optimal choice of control functions results in the opti-
mized perturbation theory. To derive the concrete equa-
tions defining control functions, it is necessary to con-
struct a dynamical system, called the approximation
cascade [358–362] whose trajectory is bijective to the
approximation sequence {ek(g)}. The limit of the latter
is in one-to-one correspondence with an attractive point
of the approximation cascade. Approaching the fixed
point, the cascade velocity

(10.3)

tends to zero. Hence, closer we are to the fixed point,
smaller is the modulus of the cascade velocity (10.3). In
other words, to provide the fastest convergence, control
functions have to minimize the cascade velocity modu-
lus

(10.4)

From here, two variants of the fixed-point conditions
can be written down: either the minimal-difference con-
dition

(10.5)

or the minimal-sensitivity condition

(10.6)

The latter, since in general uk + 1 ≠ uk, reduces to the
variational condition

(10.7)

Both conditions, (10.5) and (10.7), are widely used in var-
ious applications. When it happens that Eqs. (10.5) or

Vk g( ) Ek 1+ g uk,( ) Ek g uk,( )–=

+ uk 1+ uk–( ) ∂
∂uk

--------Ek g uk,( )

Vk g( ) Ek 1+ g uk,( ) Ek g uk,( )–≤
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--------Ek g uk,( ) .

Ek 1+ g uk,( ) Ek g uk,( )– 0=

uk 1+ uk–( ) ∂
∂uk

--------Ek g uk,( ) 0.=

∂
∂uk

--------Ek g uk,( ) 0.=

(10.7) have no solutions, these equations can be gener-
alized to the condition

(10.8)

or, respectively, to the condition

(10.9)

The accuracy of the optimized approximants (10.2), as
compared to the known value E(g), is characterized by
the percentage errors

(10.10)

Let us emphasize the difference between the opti-
mized perturbation theory and the variational proce-
dure based on the minimization of the internal-energy
functional: First, the latter has sense solely for the
ground state while the former is valid for the whole
spectrum of the eigenproblem. Second, the latter
implies the case of zero temperature, while the former
is independent of temperature. Third, the minimization
of the internal energy yields an optimal value for the
energy itself, but the described method provides opti-
mal approximants for the spectrum.

10.2. Isotropic Ground State

In general, the eigenproblem (9.20) involves all
three space variables. The situation can be simplified
when the confining potential (9.1) is spherically sym-
metric, so that ωx = ωy = ωz, and if we are interested
only in the ground state. In this case, the ground-state
wavefunction

(10.11)

depends solely on r ≡ |x|. Then the eigenproblem (9.20)
can be reduced to the effective equation

(10.12)

containing only the radial variable r. The radial wave
function χ(r), because of the relation (10.11), has to
satisfy the condition χ(0) = 0.

The Rayleigh-Schrödinger perturbation theory can
be started with the harmonic Hamiltonian

(10.13)
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including a parameter u that will later generate control
functions uk(g). The ground-state eigenfunction of the
Hamiltonian (10.13) is

The first-order approximation for the ground-state
energy writes

(10.14)

It is convenient to introduce the notation

(10.15)

which characterizes an effective interaction strength.
Then, Eq. (10.14) yields

(10.16)

Using the fixed-point condition

(10.17)

we get the equation

(10.18)

defining the control function u = u(s). In general, the
control function Eq. (10.18) is to be solved numeri-
cally. But for weak and strong interaction strengths, we
may derive the following asymptotic expansions: for
the weak-coupling limit, s  0,

and for the strong-coupling limit, s  ∞,

Substituting the control function u(s) into Eq. (10.16)
gives the first-order optimized approximant

(10.19)

Its behavior in the weak-coupling limit is

(10.20)

where s  0; and in the strong-coupling limit, we
have

(10.21)

as s  ∞. Following the optimized perturbation the-
ory described in Section 10.1, one can obtain optimized
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approximants of arbitrary orders. However, we limit
ourselves here to the first-order approximants.

For atoms with negative scattering length, as in the
case of 7Li or 85Rb, the coupling parameter (9.16) is
negative, hence the parameter (10.15) is negative, too.
If s < 0, the control function equation (10.18) has real
solutions only in the interval sc < s < 0, where

The ground-state energy (10.19) is real in the same
interval of s ∈  (sc, 0) and becomes complex for s < sc.
This corresponds to the interval gc < g < 0, with the
critical coupling parameter

(10.22)

The fact that there is a critical value for the coupling
parameter (9.16) can be reformulated as the existence
of a critical number of particles

(10.23)

that can form a coherent state. Thus, for the parameters
of the experiments [5, 110] with 7Li, we get Nc ~ 103.

When the ground-state energy becomes complex,
this means that the system is unstable. The lifetime of
such a system can be estimated as

(10.24)

where e(g) = E(s(g)). In the limit g  –∞, we have
[139] the asymptotic expansions

Therefore, in this limit the lifetime (10.24) can be esti-
mated as

(10.25)

Note that if one defines the critical coupling gc not
from the direct solution of the eigenproblem (10.12)
but from the minimization of the internal-energy func-
tional [31], then the resulting critical coupling is about
twice as large as the value (10.22).

10.3. Anisotropic Excited States

When the confining potential is not isotropic or
when we are interested not solely in the ground state

sc
4

55/4
--------– 0.534992.–= =

gc
2π( )3/2

2
----------------sc 4.212960.–= =

Nc

l0gc

4πas

-----------=

τ g( ) 1
ω0 Ime g( )
---------------------------,≡

Ree g( ) . 0.169198g2/5 0.529102g 2/5–+

+ 1.443899g 6/5– 31.006277g 2– ,+

Ime g( ) . 0.520739g2/5–

+ 1.628409g 2/5– 1.049054g 6/5– .+

τ g( ) . 
1.920

ω0 g 2/5
----------------- g ∞–( ).
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but also in the spectrum of excited coherent modes, we
have to deal with the eigenproblem (9.20). Then, for
developing optimized perturbation theory, we may start
with the Hamiltonian

(10.26)

containing three trial parameters, u1, u2, and u3,
generating control functions. The Hamiltonian (10.26)
possesses the eigenvalues

(10.27)

with the eigenfunctions

where n ≡ {n1, n2, n3}; ni = 0, 1, 2, …; and (·) is a
Hermite polynomial. Perturbation theory is accom-
plished [139] with respect to the perturbation

(10.28)

In the first order, one has

(10.29)

where u ≡ {u1, u2, u3}. Introducing the effective interac-
tion strength

(10.30)

in which

where the property |Hn(–x)| = |Hn(x)| of the Hermite
polynomials is used, one obtains for the energy levels
(10.29)

(10.31)
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2– 
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  1

2
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i 1=

3

∑

Control functions, playing the role of effective oscilla-
tion frequencies, are defined by the fixed-point condi-
tion

(10.32)

which results in three equations

(10.33)

defining ui = ui(s), where i = 1, 2, 3 and, for short, the
quantum multi-index n is dropped. The first-order opti-
mized approximant is given by

(10.34)

where again, for brevity, the index n is omitted in the
left-hand side.

The control-function equations (10.33) yield

in the weak-coupling limit s  0, and

in the strong-coupling limit s  ∞. For the energy
levels (10.34), we find

(10.35)

in the weak-coupling limit s  0, and

(10.36)

in the strong-coupling limit s  ∞.
For the ground state, when ni = 0, the coupling

strength (10.30) reduces to Eq. (10.15). Then for the
control functions, we have

∂
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if s  0, and

when s  ∞. In these two limits, the ground-state
energy is

(10.37)

for s  0, and

(10.38)

as s  ∞. In the isotropic case, we return to
Eqs. (10.20) and (10.21).

The arrangement of the energy levels in the weak-
coupling and strong-coupling limits is, in general, dif-
ferent. This can be illustrated by considering several
first energy levels en(g) ≡ En(s(g)). For example,

in the weak-coupling limit g  0, and

for g  ∞. As is seen from here,

(10.39)

but

(10.40)

This effect is called level crossing [139].
In the case of negative scattering lengths, when g < 0,

the situation is analogous to that studied in Section 10.2.
For each given energy level, labelled by n, there exists
a critical value of the coupling parameter g = gc when
the corresponding energy becomes complex. Then the
lifetime of an energy level, with the complex energy
en(g), can be estimated as

(10.41)

The spatial shape of the cloud of trapped atoms is
characterized by the aspect ratio

(10.42)

ui s( ) . ωi
2s 2/5– ,
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x3
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1/2

i 1 2,=( ),≡

in which 〈 〉 n implies (ψn, ψn). For the function

(x), this gives

(10.43)

In the weak-coupling limit,

(10.44)

as g  0, while in the strong-coupling limit,

(10.45)

This tells us that the shape of different coherent modes
essentially depends on the quantum numbers ni, if
g  0, but for large coupling parameters, the shape of
different modes is practically the same, tending to that
of Eq. (10.45).

10.4. Cylindric Trapping Potential

For a cylindrically symmetric trap, it is convenient
to use the notations introduced in Section 9.4. Cylindri-
cal traps are often employed in experiments, therefore
we shall pay more attention to this case.

To solve the eigenproblem (9.29), we may again
invoke the optimized perturbation theory of Section 10.1,
starting with the initial Hamiltonian

(10.46)

containing two control parameters, u and v. The eigen-
values of the operator (10.46) are

(10.47)

with the quantum numbers

.

The related eigenfunctions are

where (·) is a Laguerre polynomial and Hk(·) is a
Hermite polynomial.
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In the first order, we have

(10.48)

To write down this integral explicitly, it is convenient to
use the notation

in which r = {r, ϕ, z} is the dimensionless space vari-
able in cylindrical coordinates. Then we get

It is also convenient to introduce the notation

(10.49)

In this way, the energy levels (10.48) can be written as

(10.50)

where, for simplicity, the quantum indices n, m, and k
in the left-hand side are dropped.

The fixed-point conditions are

(10.51)

These yield the control-function equations

(10.52)

in which the effective interaction strength

(10.53)

is introduced. Substituting the control functions u = u(s)
and v  = v (s), defined by Eqs. (10.52), into Eq. (10.50),
we obtain the optimized approximant

(10.54)

where g(s) is given by the relation (10.53).

Similarly to the previous sections, it is instructive to
analyze the weak-coupling and strong-coupling limits in
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detail. In the weak-coupling limit s  0, Eqs. (10.52)
give the radial control function

(10.55)

and, respectively, the axial control function

(10.56)

In the strong-coupling limit s  ∞, the radial control
function is

(10.57)

where

And for the axial control function, we get

(10.58)

where s  ∞ and
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The weak-coupling limit for the energy (10.54)
becomes

(10.59)

as s  0, where

And in the strong-coupling limit, we find

(10.60)

as s  ∞, with

The derived expressions (10.59) and (10.60) are valid
for any combination of quantum numbers.

10.5. Cloud Shape and Lifetime

The shape of an atomic cloud in a cylindrical trap
can be characterized by the mean-square radial and
axial lengths, respectively,

(10.61)

where 〈 ·〉nmk is a quantum-mechanical average over the
wave function ψnmk. Taking these averages with respect

to the function , we have

(10.62)

In the weak-coupling limit s  0, the radial mean-
square deviation is

(10.63)
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and the axial mean-square length is

(10.64)

In the strong-coupling limit s  ∞, for the radial and
axial averages (10.62) we find

(10.65)

and, respectively,

(10.66)

For the aspect ratio
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we have
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This gives in the weak-coupling limit
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where s  0, and

In the strong-coupling limit, the aspect ratio (10.68) is
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These expansions confirm that the dependence of the
aspect ratio on quantum numbers diminishes in the
strong-coupling limit, so that

in agreement with Eq. (10.45).
Considering the stationary properties of coherent

modes, we should not forget that in real traps atoms
cannot be confined infinitely long. This is because the
trapping of neutral atoms requires their special spin
polarization which can be lost during atomic collisions
[363]. One usually considers binary and triple depolar-
izing collisions [364, 365]. The corresponding loss rate
of atoms in a coherent mode ψnmk can be written as

(10.71)

where λ2 is a two-body dipolar loss rate coefficient, λ3
is a three-body recombination loss rate coefficient, and

(10.72)

For alkali atoms [364, 365], the two-body loss rate
coefficient is λ2 ~ 10–16–10–15 cm3/s and the three-body
one is λ3 ~ 10–30–10–28 cm6/s, the lifetime of atoms in a
trap is on the order of 1–100 s.

The integrals (10.72), with , take the form

(10.73)

where Inmk is the same integral as in Section 10.4 and

In the weak-coupling limit, when s  0, the quanti-
ties (10.73) are

(10.74)

and in the strong-coupling limit, we have

(10.75)

as s  ∞. Since s ~ N, the quantities (10.75) decrease
with increasing number of particles. However, the loss
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rates (10.71) increase with N according to the laws Γ2 ~
N7/5 and Γ3 ~ N9/5.

To compare the loss rates of excited coherent modes
with those of the ground state, we may analyze the
reduced loss rates

The latter possess the properties

In order to get a feeling in what range the reduced loss
rates vary, we may consider several first states. For this
purpose, we need to calculate the corresponding inte-
grals Inmk and Jnmk. For instance, for the ground state,

And for several first excited states,

In the case of n = k = 0, but arbitrary m,

In this way, we find

Thus, the loss rates of excited states are close to those
of the ground state.

CHAPTER 11.
WEAK-TO-STRONG COUPLING CROSSOVER

When considering the properties of trapped atoms at
arbitrary coupling parameters, one usually needs to
invoke computer calculations. Analytical expressions
can be available only in the weak-coupling and strong-
coupling limits. Nevertheless, there is a method permit-
ting one to reconstruct an analytical formula, valid for
the whole region of coupling parameters, for a function
whose asymptotic expansions in the weak-coupling
and strong-coupling limits are known. Here we briefly
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delineate this method and then apply it for describing
several properties of trapped atoms.

11.1. Self-Similar Crossover Approximants

Assume that we are interested in the behavior of a
function f(s) of the coupling parameter s. Let this func-
tion be defined by a complicated equation that can be
solved only numerically. But we can find the asymp-
totic expansion

(11.1)

in the weak-coupling limit. And we can often analyti-
cally derive the asymptotic expansion

(11.2)

in the strong-coupling limit, where the powers βj are
arranged in the decreasing order, βj > βj + 1.

Introducing into series (11.1) control functions by
means of an algebraic transformation [366–368] and
using the self-similar approximation theory [353–362],
we obtain [369, 370] the self-similar root approximant

(11.3)

where k is the order of the approximation taken. The
coefficients Aj and powers nj are to be defined by consid-
ering the strong-coupling limit of the approximant (11.3)
and equating it to the strong-coupling expansion (11.2).
This way can be called the left-to-right crossover.

In general, it could be possible to go the opposite
way, from the right to the left. That is, we could con-
struct a nested-root approximant starting from the
strong-coupling asymptotic form (11.2) and then define
the corresponding coefficients and powers by equating
the approximant expansion in the weak-coupling limit
to the asymptotic expansion (11.1). However, the right-
to-left crossover results in approximants that usually
are less accurate than the left-to-right crossover formu-
las. This is connected to the fact that the weak-coupling
expansions have, as a rule, zero radius of convergence,
while the strong-coupling ones have a finite radius of
convergence. The accuracy of the left-to-right cross-
over approximants is usually better than that of the
right-to-left ones because of the larger region of appli-
cability of the strong-coupling expansion (11.2) as
compared to the region of validity of the weak-coupling
expansion (11.1). In fact, the latter can be valid for
s ! 1, hence its region of validity is inside the interval
[0, 1). In contrast, the strong-coupling form, derived for
s @ 1, has the region of applicability inside the interval
(1, ∞). Therefore the self-similar crossover approxi-
mant has to be fitted to the asymptotic expansion that
possesses the larger region of validity.

When considering the strong-coupling limit s  ∞
for the approximant (11.3), we need to know the rela-

f s( ) . a0 a1s a2s2 … s 0( )+ + +

f s( ) . b0s
β0 b1s

β1 b2s
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+ A3s3 }
n3 … Aks

k )
nk

,+ +

tion between the powers nj and the numbers j = 1, 2, …
Among all possible relations, we have to choose that
one which is the most general, imposing no restrictions
on the powers βj. It is possible to show that the condi-
tion

(11.4)

provides a general way of expanding the form (11.3),
valid for any k = 1, 2, … and arbitrary βj.

Under the criterion (11.4), and rewriting the approx-
imant (11.3) in the form

where x ≡ s–1, it is easy to expand the latter in powers of
x. Comparing the resulting expansion with the strong-
coupling limit (11.2), we obtain

(11.5)

with 1 ≤ j ≤ k – 1. The values of nj, defined by
Eqs. (11.5), are in compliance with the criterion (11.4)
because of the inequality βj – βj – 1 < 0.

The first-order self-similar approximant (11.3) is

where

The second-order approximant (11.3) takes the form

in which

In the third order, we find
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where

The method of constructing self-similar crossover
formulas is also applicable to asymptotic expansions
more general than Eq. (11.1), for instance, to series

(11.6)

in which αj are arbitrary positive powers arranged in the
increasing order as

(11.7)

Then, instead of Eq. (11.3), we obtain the self-similar
approximant

(11.8)

The criterion (11.4) transforms to the inequality

(11.9)

And, in the place of Eqs. (11.5), we find

(11.10)

with j = 1, 2, …, k – 1.
The described method makes it possible to construct

analytical interpolative formulas for the whole range of
the coupling parameter. The method can also be used
for interpolating any functions of other variables, pro-
vided the corresponding asymptotic expansions are
available.

11.2. One-Dimensional Confined System

To illustrate the method presented in the previous
section, let us consider a model case of a one-dimen-
sional system of trapped atoms [369]. This means that

in the eigenproblem ψ = Eψ, we consider the nonlin-
ear Hamiltonian

(11.11)

in which x ∈  (–∞, +∞).
In order to derive the weak-coupling and strong-

coupling asymptotic expansions, we may resort to the

B1
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optimized perturbation theory of Section 10.1. To this
end, we start with the trial Hamiltonian

(11.12)

containing a control parameter u, possessing the eigen-
value

and having the eigenfunction

where n = 0, 1, 2, …

The first-order approximation gives

(11.13)

with the notation

The variational condition for Eq. (11.13) yields the
equation

(11.14)

for the control function u = u(α), where

(11.15)

For the optimized approximant

(11.16)

we have

(11.17)

Expression (11.17), together with the control-function
equation (11.14), results in the weak-coupling expan-
sion

(11.18)
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for α  0, and in the strong-coupling expansion

(11.19)

as α  ∞.
Following Section 11.1, we find the self-similar

crossover approximants. In the first order, this gives

(11.20)

with A = . In the second order, we find

(11.21)

where

Formulas (11.20) and (11.21) interpolate between the
weak-coupling expansion (11.18) and the strong-cou-
pling limit (11.19).

A similar interpolation procedure can be applied for
constructing an analytical expression for the ground-
state wave function [369]. The latter, at small space
variable, has an expansion

(11.22)
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and in the opposite limit

. (11.23)

The interpolating formula, sewing the limits (11.22)
and (11.23), can be constructed invoking the self-simi-
lar exponential approximants [371], which results in

(11.24)

Here, the coefficients a and b are to be defined by
expanding the function (11.24) in powers of x  0
and substituting this expansion into the eigenproblem

 = Eψ∗ , which yields

The normalization constant C and energy E are defined
by the equations

(11.25)

where E ≡ E∗ .

The self-similar approximant (11.24) for the wave
function is different from the ground-state wave func-
tion

(11.26)

with the control function u(α) defined by the varia-

tional equation (11.14), with α = g. And in the
Thomas–Fermi approximation, we have the wave func-
tion

(11.27)

with the energy

(11.28)

To compare these different approximations, we con-
sider the properties of the ground-state energy E(g), as
a function of the coupling parameter g, presented by the
optimized approximant Eopt(g) ≡ E(α(g)) given by
Eq. (11.17), by the crossover approximant (g) from
Eq. (11.21), by the energy E∗ (g) defined in Eq. (11.25),
and by the Thomas–Fermi energy ETF(g) in Eq. (11.28).
We also compare the shape of the density

(11.29)

defined for the corresponding functions (11.24),
(11.26), and (11.27). The accuracy of the approxima-
tions can be characterized by substituting the wave
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1
2
---x2– 

  x ∞( )exp

ψ* x( ) C
1
2
---x2– ax2 bx2–( )exp+

 
 
 

.exp=
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Fig. 26. The ground-state energy for the one-dimensional
nonlinear Schrödinger equation. The self-similar approxi-
mant E∗ (g) (solid line) is given by Eq. (11.25), the crossover

approximant (g) (dashed line) is defined in Eq. (11.21),

and the Thomas–Fermi approximant ETF(g) (dashed line
with diamonds) is the energy (11.28).
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functions into the Schrödinger equation and calculating
the residual R(x) and dispersion σ2, given by the equa-
tions

(11.30)

Figure 26 shows the energies E∗ (g), (g), and
ETF(g). The first two energies are almost indistinguish-
able from each other. The optimized approximant
Eopt(g) is not shown since it practically coincides with

R x( ) Ĥ E–( )ψ x( ), σ2 R x( ) 2 x.d

∞–

+∞

∫≡≡

E2*

E∗ (g). The Thomas–Fermi energy ETF(g) has an incor-
rect weak-coupling limit and becomes a reasonable
approximation for g ≥ 7.

The density (11.29) for the self-similar wave func-
tion (11.24), Gaussian function (11.26) and Thomas–
Fermi wave function (11.27) is presented in Fig. 27 for
different coupling parameters. As is seen, the self-sim-
ilar function (11.24) has the correct behavior in both
weak-coupling as well as strong-coupling limits, while
the Gaussian function (11.26) does not present a good
approximation in the strong-coupling limit and the
Thomas–Fermi function (11.27) is not correct in the
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Fig. 27. The density (11.29) for the corresponding wave functions in the self-similar approximation (11.24) (solid line), Gaussian
approximation (11.26) (dashed line), and Thomas–Fermi approximation (11.27) (dashed line with diamonds) for different coupling
parameters: (a) g = 0.2; (b) g = 1; (c) g = 5; (d) g = 20; (e) g = 50; (f) g = 100.

n(x)

x



738

LASER PHYSICS      Vol. 11      No. 6      2001

COURTEILLE et al.

weak-coupling limit. In addition, the latter function is
always incorrect at the boundary of an atomic cloud.

The accuracy of the corresponding approximate
solutions to the nonlinear Schrödinger equation is well
illustrated by the residual R(x), which is shown in
Fig. 28. We also calculated the dispersion σ2 for differ-
ent coupling parameters within the region 0 ≤ g ≤ 100.
The maximal, with respect to g, dispersion for the self-
similar function (11.24) is of order one, for the Gauss-
ian function (11.26) it is about 400, and for the Tho-
mas–Fermi function (11.27) it is divergent. This clearly
proves that the self-similar function (11.24) is the most
accurate solution to the nonlinear Schrödinger equation
for small as well as for large coupling parameters.

11.3. Spherically Symmetric Trap

Similarly to the model one-dimensional case con-
sidered above, we can construct self-similar crossover
approximants for the realistic three-dimensional situa-
tion. We shall illustrate this for a spherically symmetric
trap. To this end, let us consider the isotropic ground
state studied in Section 10.2.

Using the weak-coupling and strong-coupling
expansions, (10.20) and respectively (10.21), for the
ground-state energy (10.19), we construct the crossover
formulas of first order,

(11.31)

where A = 0.633938; of second order,

(11.32)

with A1 = 1.168636 and A2 = 0.401878; of third order,

(11.33)

where B1 = 1.633061, B2 = 1.132289, and B3 =
0.254766; of fourth order,

(11.34)
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Fig. 28. The residual R(x) defined in Eq. (11.30) for the self-similar solution (11.24) (solid line), Gaussian solution (11.26) (dashed
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with C1 = 2.066398, C2 = 2.111737, C3 = 0.970940,
C4 = 0.161506; and of fifth order,

(11.35)

where the coefficients are D1 =2.479006, D2 =
3.311734, D3 = 2.278301, D4 = 0.777603, and D5 =
0.102385. The variable s is defined in Eq. (10.15). Note
that A > A2 > B3 > C4 > D5, which suggests that the accu-

racy of (s) should increase with increasing k. The

accuracy of the crossover approximants (s) can be
characterized by the percentage errors

calculated with respect to the optimized approximant
(10.19). Even more instructive are the maximal errors

For the latter, we find

which demonstrates good numerical convergence of
the crossover approximants for the ground-state energy.

A crossover approximant for the radial wave func-
tion satisfying Eq. (11.12) can also be constructed by
sewing the small-radius limit

(11.36)

and the large-distance asymptotic form

(11.37)

The self-similar crossover formula is

(11.38)

Here the coefficients a and b are to be found by expand-
ing Eq. (11.38) in powers of r and substituting this
expansion into Eq. (10.12). Equating the coefficients at
the like powers of r, we get
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Fig. 29. The ground-state energy of atoms confined in a
spherically symmetric trap: The self-similar approximant
(11.39) (solid line); second-order crossover approximant
(11.32) (dashed line); and the Thomas–Fermi energy (9.34)
(short-dashed line).

Fig. 30. Percentage errors of the first crossover approxi-
mants for the ground-state energy of a spherical trap: (s)
(solid line); (s) (dashed line); (s) (short-dashed line).
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The normalization coefficient C and energy E are
defined by the equations

(11.39)

where E∗  ≡ E.

In this way, we obtain several representations for the
ground-state energy: The self-similar approximant E∗ ,

given in Eq. (11.39), the crossover approximants  in
Eqs. (11.31) to (11.35), the optimized approximant E(s)
defined by Eq. (10.19), and the Thomas–Fermi approx-
imation ETF from Eq. (9.34), with ν = 1. Similarly to the
previous section, we may analyze the behavior of these
approximations as functions of the coupling parameter
g. The analysis shows that the self-similar approximant
E∗ (g), defined in Eq. (11.39), gives the best approxima-
tion, valid for the whole range of the parameter g ∈
[0, ∞), correctly interpolating the weak-coupling
expansion and the Thomas–Fermi limit. The latter
gives a good approximation only for g > 300, essen-
tially deviating from the weak-coupling form, as is seen
in Fig. 29. The percentage errors (s) of different

crossover approximants (s) are presented in Figs. 30
and 31. The maximal error occurs around g ~ 1.

The spatial density

(11.40)

is expressed through the corresponding radial function,
for which one can take either the self-similar form χ∗ (r)
in Eq. (11.38), or the Gaussian approximation χ(0)(r)
from Section 10, or the Thomas–Fermi wave function

The accuracy of the considered approximate solutions
can again be characterized by the residual

and the dispersion

The analysis here is similar to the previous section, and
again the self-similar form (11.38) turns out to be the
best approximation, valid for all coupling parameters.
Thus, the residual as well as the dispersion diverge for
the Thomas–Fermi approximation at any g. The accu-
racy of the Gaussian variational approximation is good
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R r( ) Ĥr E–( )χ r( )≡

σ2 R r( ) 2 r.d

0

∞

∫≡

for small g but decreases with increasing g. For
instance, the dispersion σ2 for the Gaussian approxima-
tion monotonically rises with g, being e.g., at g = 2513,
equal to 13.2. At the same time, the dispersion for the
self-similar approximant (11.38) reaches the maximum
of σ2 = 4.1 at g = 2411 and then again diminishes to
σ2 = 1.1 at g = 2513.

11.4. Traps of Cylindrical Shape

Self-similar crossover approximants can also be
constructed for cylindrical traps, using the expansions
of Section 10.4. Recall that these expansions, being
done in terms of the variable

are valid for arbitrary excited coherent modes labelled
by the quantum numbers n, m, and k.

Being based on the weak-coupling, (10.59), and
strong-coupling, (10.60), expansions for the energy
levels, and employing the technique of Section 11.1, we
obtain the crossover approximants (s). Thus, in the
first order, we have

(11.41)

where

The second order yields

(11.42)

with the same a0 and with

In the third order, we get
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Similarly, we find (s) and (s), although we do

not write them down explicitly.

To check the accuracy of the crossover approxi-
mants (s), we calculate the percentage errors (s)

comparing (s) with the optimized approximant (10.54).

We have calculated the maximal errors  ≡ maxs (s)
for the anisotropy parameter ν, defined in Eq. (9.22), in
the range 0.1 ≤ ν ≤ 100 for the ground state and for ten

E4* E5*

Ek* εk*

Ek*

εk* εk*

first excited states. For example, for the ground state,
with n = m = k = 0, and for ν = 1, we find

which demonstrates good convergence. In the case of a
cigar-shape trap, with ν = 0.1, we obtain

ε1* 3.7%, ε2* 1.4%, ε3* 0.8%,= = =

ε4* 0.6%, ε5* 0.4%,= =

ε1* 8%, ε2* 3.5%, ε3* 2%,= = =

ε4* 1.2%, ε5* 0.8%.= =
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Fig. 32. Percentage errors of  (solid line),  (dashed line) and  (short-dashed line) as functions of the coupling g for several

energy levels and trap shapes: (a) ν = 0.1, n = m = k = 0 (ground-state); (b) ν = 0.1, n = k = 0, m = 1 (vortex state); (c) ν = 0.1, n = 3,
m = 2, k = 1; (d) ν = 100, n = m = k = 0; (e) ν = 100, n = k = 0, m = 2.
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For a disk-shape trap, with ν = 10, we have

The same good convergence occurs for excited states
with different quantum numbers and for various
anisotropy parameters. The standard situation is such
that  ≈ 4–12%,  ≈ 2–5%, and already the third-

order approximant has  ~ 1%.

To illustrate in more detail the accuracy of the cross-
over approximants  as functions of the coupling
parameter g, we show in Fig. 32 the percentage errors
of , , and  for several levels and different
anisotropy parameters. The errors are calculated with
respect to the optimized approximant (10.54) whose
ground-state behavior is presented in Fig. 33, where the
Thomas–Fermi energy is also given for comparison.

In the same way, we may construct the crossover
approximants for the aspect ratio (10.68), being based
on the asymptotic expansions (10.69) and (10.70).
Here, it is more convenient to deal with the quantity

(11.44)

for which Eqs. (10.69) and (10.70) transform to the
expansions

in the weak-coupling limit s  0, and to

ε1* = 12.5%, ε2* = 3%, ε3* = 2.8%, ε4* = 1.8– %.

ε1* ε2*

ε3*

Ek*

E1* E2* E3*

Rr s( )
Rr s( )

2ν
------------- 1,–≡

Rr s( ) . 
p

qν
------ 1– 

  p
qν
------ α1s α2s2 …+ +( )+

Rr s( ) . β1s 4/5– β2s 8/5– …+ +

in the strong-coupling limit s  ∞. Constructing the

self-similar approximant (s), we then return to the
aspect ratio

(11.45)

We have compared the accuracy of the crossover
approximants, corresponding to Eq. (11.45), with the
value (10.68) for the anisotropy parameter ν in the
range 0 < ν ≤ 100, and for the first ten energy levels.
The results are similar to those obtained for the energy
levels themselves.

11.5. Strong-Coupling and Thermodynamic Limits

The atom–atom coupling (9.27) is proportional to
the number of atoms N, which suggests that the strong-
coupling limit g  ∞ has to be related to the thermo-
dynamic limit N  ∞. The averages of observable

quantities  should behave in the thermodynamic limit
so that

(11.46)

Let us check this property for the coherent averages of
the Hamiltonian (8.13). For the latter, the coherent
average (8.54) coincides with the pure coherent average
(8.31), that is with (8.38). For the normalization (8.51),
we have

(11.47)

where n implies the whole set of quantum numbers n,
m, and k; the mean single-particle energy is

(11.48)

with dimensionless r measured in units of lr, defined in
Eq. (9.23); and γn being the same as γnmk in Eq. (10.72).
From the eigenproblem (9.29) it follows that

Hence, the average energy (11.47) of a coherent state
can also be presented in two other forms as

(11.49)

Note that one should not confuse here H, which is the

system Hamiltonian (8.13), with , which is the
Schrödinger Hamiltonian (9.28).

Consider the strong-coupling limit g  ∞ for the
coherent average energy (11.47) or (11.49). According

Rr*

Rr* s( ) 2ν 1 Rr* s( )+[ ] .=

Â

1
N
---- Â〈 〉

N ∞→
lim ∞.<

H〈 〉 Nn "ωrN Sn
1
2
---gγn+ 

  ,=

Sn ψn* r( ) 1
2
---—2–

1
2
--- r2 ν2z2+( )+ ψn r( ) r,d∫≡

En ψn Ĥψn,( )≡ Sn gγn.+=

H〈 〉 Nn
1
2
---"ωrN En Sn+( ),=

H〈 〉 Nn "ωrN En – 
1
2
---gγn 

  .=

Ĥ
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Fig. 33. The ground-state energy of atoms confined in a
cylindrical trap with ν = 10: The optimized approximant
(10.54) (solid line) and the Thomas–Fermi energy (9.34)
(dashed line).



LASER PHYSICS      Vol. 11      No. 6      2001

BOSE–EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES 743

to the notation (10.53), this corresponds to s  ∞.
Then, Eqs. (10.60) and (10.75) yield

In this limit, the coherent single-particle energy (11.48)
is

(11.50)

Therefore,

(11.51)

From the definition of the coupling (9.27), we have

(11.52)

And the relation (10.53) between g and s gives

(11.53)

Then, the average energy (11.51) becomes

(11.54)

as N  ∞.
Note that in the strong-coupling limit, when s  ∞,

the average kinetic energy

becomes negligible as compared to the average poten-
tial energy and the mean interaction energy. To show
this, we may write the mean single-particle energy
(11.48) as

From the asymptotic expansions (10.65) for r0 and
(10.66) for z0, we have

Hence the average kinetic energy

tends to zero according to the limit (11.50).
If we consider the thermodynamic limit, keeping the

frequency ωr fixed, then

En s( ) . 
5
4
---s2/5, γn s( ) . 

1
2g
------s2/5 s ∞( ).

Sn s( ) En s( ) gγn . 
3
4
---s2/5.–=

H〈 〉 Nn . "ωrNs2/5 s ∞( ).

g 4π
ωr

ε
-----N , ε "

m0as
2

-----------.≡=

s Cn
5/2 ωr

ε
----- 

 
1/2

N , Cn 8π qInν( )2/5
.≡=

H〈 〉 Nn . Cn"ε
ωr

ε
----- 

 
6/5

N7/5,

Kn ψn, 
1
2
---—2ψn– 

 ≡

Sn Kn
1
2
---r0

2 1
2
---ν2z0

2.+ +=

1
2
---r0

2 1
2
---ν2z0

2
 . 

3
4
---s2/5 s ∞( ).+

Kn . Sn
3
4
---s2/5 0 s ∞( )–

1
N
---- H〈 〉 Nn N2/5 ∞ N ∞( ).∼

Then the property (11.46) is not valid for the Hamilto-
nian H, which implies that such a system is thermody-
namically unstable. The N7/5-law of divergence of the
average energy (11.54) is the same as that found [372]
for the ground-state energy of bosons interacting
through Coulomb forces.

Another possibility could be to resort to the thermo-
dynamic limit as defined in Eq. (7.35), when lr ~ N1/3

and ωr ~ N–2/3. Then

which means that the average energy becomes negligi-
ble.

Finally, we may ask the question, how we should
change the frequency ωr in order to satisfy the condi-
tion of thermodynamic stability (11.46) so that the
average energy (11.54) would give a finite value,

The latter is satisfied for ωr ~ N–1/3 and, respectively,
lr ~ N1/6. This suggests the definition of the thermody-
namic limit as

(11.55)

It is interesting that the same definition of the thermo-
dynamic limit follows from a quite different condition
[31] requiring the finiteness of the Bose-condensation
temperature for an ideal gas.

CHAPTER 12.
VORTICES IN TRAPPED CONDENSATES

Vortex states in trapped atomic clouds have been
considered theoretically by several authors [151, 154,
320, 365, 373–375]. Vortex production appears to be a
common consequence of mechanically disturbing a
condensate. A variety of methods have been suggested

1
N
---- H〈 〉 Nn N 2/5– 0 N ∞( ),∼

1
N
---- H〈 〉 Nn const N ∞( )?

N ∞, ωr 0, Nωr
3 const.
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Fig. 34. The vortex energies as functions of νg: the basic-
vortex energy Ω010 (solid line) and the energy Ω020 of the
vortex with the winding number m = 2 (dashed line).
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by which vortices could be formed. A straightforward
way would be by rotating the trap. However, since such
a rotation is difficult to realize, other techniques have
been proposed: population transfer via a Raman transi-
tion into an angular momentum state [162, 376]; cre-
ation of circulating states in traps with a multiply con-
nected geometry, such as a toroidal trap or a magnetic
trap pinched by a blue-detuned laser [377]; stirring the
condensate by means of laser beams [378, 379]. The
possibility of creating different topological modes,
including the vortex ones, by imposing resonance fields
has been advanced first in [139] and studied later in
[380]. Recently, vortices were created in a two-compo-
nent condensate [9] by combining a microwave field
inducing interconversion between the two components at
a laser beam rotating with a resonant frequency [142].

12.1. Vortex Transition Frequencies

To transfer a coherent cloud of atoms from the
ground state with the energy per particle E000 to another
coherent state having the energy Enmk, one needs to
pump into the system the energy per particle

(12.1)

To estimate the difference (12.1), we may use the opti-
mized approximants of Section 10. These show that for
the strong coupling g @ 1 two principally different sit-
uations can occur. Since the energy of a coherent state,
labelled by the indices n, m, and k, grows with g as
Enmk ~ g2/5, the difference (12.1) also grows in the same
way, Ωnmk ~ g2/5, except for the case with the selection
rule

(12.2)

when the difference (12.1) diminishes with g. The
selection rule (12.2) is satisfied for the sole state with
n = 0, m = 1, and k = 0, which corresponds to the vortex
state with the winding number m = 1. Vortices with
higher winding numbers have essentially higher ener-
gies that increase with g. The behavior of the vortex
energies Ωnmk, where m ≠ 0, as functions of νg, is pic-
tured in Fig. 34. As is seen, the energy Ω010 of the basic
vortex state with the minimal winding number m = 1
decreases with νg while the energy Ω020 of the vortex
state with the winding number m = 2 first decreases
with νg and then increases. The qualitatively different
behavior of the energy Ω010 of the basic vortex as com-
pared to the energies of other vortex states suggests the
following criterion of Energetic Stability: For a given
orbital momentum "|m |, at large νg, the creation of m
basic vortices is energetically more profitable than the
formation of one or several vortices with higher wind-
ing numbers giving in total the same orbital momen-
tum. This is in agreement with the thermodynamic sta-
bility of vortices studied in [375].

To form a vortex in a rotating trap, one has to reach
the critical rotation frequency that in dimensionless

Ωnmk Enmk E000.–=

2π( )3/2 2k 1+ 2n m 1+ +( )Inmk 1,=

units reads "Ωnmk/|Lz |, where Lz = "m is an eigenvalue

of the orbital momentum operator  = –i"∂/∂ϕ. For
the basic vortex with the winding number m = 1, the
critical frequency is

(12.3)

To consider the dependence of this frequency on the
coupling g it is convenient to employ the notation

and to use the results of Section 10. Then, in the weak-
coupling limit, we have

(12.4)

as s  0, and in the strong coupling limit, we get

(12.5)

as s  ∞. Invoking the expansion (10.65) for the
mean-square radius, according to which r0 . s1/5 as
s  ∞, we may write

(12.6)

As a function of g, this reduces to

(12.7)

for νg  ∞.
Invoking for the critical rotation frequency the Tho-

mas–Fermi approximation, combined with a hydrody-
namic approximation, one finds [320, 365, 375, 381]
the value

(12.8)

where

(12.9)

is the Thomas–Fermi radius and ξ0 ≈ 1/rc is the coher-
ence length. From here

(12.10)

The expressions (12.7) and (12.10) are close to each
other in the region 1 ! νg < 103. For instance, when
νg = 100, their difference is about 10%.

L̂z

Ωc Ω010 = E010 E000.–≡

s
2νg
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----------------≡
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-----------s–

3 7ν+
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---------------s2 7 30ν 31ν2+ +
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3
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3

2r0
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---------------------- 3.424
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----------------=

Ωc
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ξ0
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  ,ln≈
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2 2ETF

15
4π
------νg 

 
2/5

= =

Ωc
0.932

νg( )2/5
---------------- 0.8νg( ).ln≈
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12.2. Effective Radial Equation

To analyze the radial cross section of a vortex, it is
convenient to derive an effective radial equation not
containing the axial variable z. To this end, let us sub-
stitute the function

(12.11)

where m = 0, ±1, ±2, … and χ is real, into the eigen-
problem (9.29) with the Hamiltonian (9.28). Then we
have

(12.12)

Let us present χ as a product

(12.13)

in which F(r, z) is a slow function of z, such that

(12.14)

and where h is normalized according to the condition

Define the radial, Er , and axial, Ez, energies by the rela-
tion

(12.15)

Then from Eqs. (12.12) and (12.13), taking account of
the inequality (12.14), we find

(12.16)

Introduce the function

(12.17)

ψ r ϕ z, ,( ) χ r z,( ) eimϕ

2π
----------,=

1
2
--- ∂2

∂r2
-------

1
r
--- ∂

∂r
----- ∂2

∂z2
-------+ + 

  χ–

+
1
2
--- r2 ν2z2 m2

r2
------+ + 

  χ g
2π
------χ3+ Eχ .=

χ r z,( ) F r z,( )h z( ),=

∂F
∂z
------h  ! F

dh
dz
------ ,

h2 z( ) zd

∞–

+∞

∫ 1.=

E Er Ez,+≡

Ez
1
2
--- h z( ) ∂2

∂z2
-------– ν2z2+ 

  h z( ) z.d

∞–

+∞

∫≡

1
2
--- ∂2

∂r2
-------

1
r
--- ∂

∂r
-----+ 

  Fh–

+
1
2
--- r2 m2

r2
------+ 

  Fh
g

2π
------F3h3+ ErFh.=

f r( ) F r z,( )h2 z( ) z.d

∞–

+∞

∫≡

Keeping in mind that F(r, z) is a slow function of z, we
may use the approximation

Multiplying Eq. (12.16) by h, integrating over z, and
defining the radial coupling

(12.18)

and the nonlinear radial Hamiltonian

(12.19)

we come to the effective radial equation

(12.20)

As an example of the function h, let us take the har-
monic-oscillator wave function

Then the axial energy is

and the radial coupling (12.18) becomes

where

The latter integral decreases with k, e.g.,

Therefore, the radial coupling α diminishes for higher
excited states.

The radial equation (12.20) describes the radial pro-
file of a vortex. The angle dependence of the latter,
given by Eq. (12.11), defines the circulation velocity

F3 r z,( )h4 z( ) zd

∞–

+∞

∫ f 3 r( ) h4 z( ) z.d

∞–

+∞

∫≅

α g
2π
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∫≡
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where eϕ is the unit vector corresponding to the polar
angle ϕ. To be finite, this velocity requires that the
winding number be nonzero, m ≠ 0.

Note that the Thomas–Fermi approximation is not
directly applicable for solving Eq. (12.20) in the case of
vortex states. This is because the corresponding solu-
tion

diverges at r = 0 for m ≠ 0.

12.3. Vortex Wave Function

The structure of the radial Hamiltonian (12.19)
shows that there are two qualitatively different regions
where either the nonlinear term or the harmonic one is
more important as compared to each other. These
regions are

(12.21)

When r  ∞, the harmonic term always prevails. To
find an approximate analytic solution to the radial
equation (12.20), let us consider two cases, when the
coupling is not large and when α  ∞.

In the first case, when α is not large, say of order one
or less, the nonlinear region is small. The radial energy
Er can be obtained by the optimized perturbation theory
of Section 10.1. As the initial approximation, we may
take the harmonic Hamiltonian

(12.22)

with the eigenvalue

(12.23)

and the eigenfunction

(12.24)

For the first-order approximation

(12.25)

we find

(12.26)

f TF
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where

From the fixed-point condition

(12.27)

we define the control function

(12.28)

For the optimized approximant

(12.29)

we obtain

(12.30)

In the weak-coupling limit, Eq. (12.30) gives

(12.31)

and in the strong-coupling limit, one has

(12.32)

as s  ∞. It is interesting that if, being based on these
asymptotic expansions, we construct the self-similar
crossover approximant

(12.33)

as is explained in Section 11.1, then

and the crossover formula (12.33) coincides with the
energy (12.30).

To find the energy of the basic vortex with the quan-
tum numbers n = 0 and m = 1, we note that I00 = 1 and
I01 = 0.5. The related control functions, given by
Eq. (12.28), are

The corresponding radial energies are

Inm
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Then the vortex energy in the strong-coupling limit is

This is to be compared with the critical rotation fre-
quency

obtained in the Thomas–Fermi plus hydrodynamic
approximations [320] for a two-dimensional vortex.

From the radial equation (12.20), it follows that its
solution behaves at small distance as

(12.34)

and at large distance as

(12.35)

For the case when n = 0, we have

(12.36)

The crossover approximant, sewing the asymptotic
expansion (12.34) and (12.36), is

(12.37)

where a and b are calculated from Eq. (12.20), after the
form (12.37) is expanded in powers of r and substituted
into this equation. This makes it possible to express the
coefficients a and b through Er and C. The latter are
defined by the equations

(12.38)

The accuracy of approximate solutions to Eq. (12.20)
can be characterized by the residual

(12.39)

and the dispersion

(12.40)

Considering the nonrotating case, with m = 0, we get

The dispersion (12.40) for the crossover formula (12.37)
is smaller than that for the variational function (12.24)
when α < 70.
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a
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2 α2C4– 1–

16a
---------------------------------.= =

In the case of the basic vortex with the winding
number m = 1, we have

The crossover function (12.37) is a better approxima-
tion than the variational function (12.24) for α < 15.

Thus, the crossover approximant (12.37) is a rea-
sonable approximation for a vortex wave function if the
coupling α < 10. For large α @ 10, the error of the
approximant (12.37), characterized by the residual
(12.39) and dispersion (12.40), quickly grows. The rea-
son for this is clear: In constructing the crossover for-
mula (12.37), we have used the information on the
behavior of the solution to Eq. (12.20) at small dis-
tance, when r  0, which is described by the form
(12.34), and at large distance, when r  ∞, where the
harmonic term prevails, so that the asymptotic solution
is given by Eq. (12.36). At the same time, there is an

additional characteristic scale r ~  defining the dis-
tance at which the dominance of the nonlinear term in
the Hamiltonian (12.19) changes to that of the har-
monic term. The peculiarity in the behavior of a solu-
tion, due to this additional crossover, can be neglected

only if α is not large, so that the region 1 ! r ! 
squeezes to a small interval or practically disappears.
The value α ≈ 10 is exactly that critical value.

In order to analyze the behavior of the solution to
Eq. (12.20) for large coupling α @ 10, let us consider
the case, opposite to the previous one, when there exists

a wide region 1 ! r ! , where the nonlinear term is

a 1
Er

2
-----, b–

Er
2 8αC2– 4–

48a
----------------------------------.= =

α

α

α
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0 1 2 3 4 5
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Fig. 35. The self-similar crossover approximants (r) for

the vortex as compared to exact numerical data marked by

diamonds: (r) is shown by the solid line; (r), by the

long-dashed line; (r), by the short-dashed line; and

(r) is presented by the dotted line.
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f 1* f 2*
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dominant as compared to the harmonic term. In this
region, Eq. (12.20) may be written as

(12.41)

the harmonic term being omitted. To simplify the
analysis of Eq. (12.41), we scale it so that it reduces to
the equation

(12.42)

The return from Eq. (12.42) back to Eq. (12.41) can be
done by the scaling

To construct a crossover solution in the region 0 ≤
r < , when α @ 10, we need an asymptotic expan-
sion for f(r) at r  0 and another expansion for r @ 1,

but r < . For example, the ground-state solution,
with m = 0, behaves as

at small distance, the coefficients being

And for r @ 1, the solution tends to f(r) . 1.
Let us concentrate on the vortex solution with m = 1.

Then at small distance, we have

(12.43)

where

At large distance, we find

(12.44)

Employing the method of Section 11.1, we construct
[369] the self-similar crossover approximants

(12.45)

1
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The accuracy of the approximants (12.45) can be
checked by comparing them with the exact numerical
solution [307, 382] of the vortex equation (12.42). This
comparison is presented in Fig. 35, where it is seen that
the approximant (r) practically coincides with the
numerical solution.

CHAPTER 13.
ELEMENTARY COLLECTIVE EXCITATIONS

Following the experimental realization of Bose–
Einstein condensate in trapped atomic gases, there has
been an intensive study, both experimental and theoret-
ical, of elementary excitations in these systems
[30, 31]. For the theoretical description of elementary
excitations one usually employs two equivalent
schemes. One of them is based on the diagonalization
of the Hamiltonian in the Bogolubov approximation
[282, 300]. Another approach relies on the linearization
of evolution equations. The latter approach can be
accomplished in several ways which we illustrate
below.

It is worth noting that collective excitations of
trapped atoms have many common features with col-
lective excitations in nuclei, that are also finite systems
where nucleons are trapped by means of self-consistent
potentials [383, 384], and with collective excitations in
metallic clusters [385–387].

13.1. Linearization of Gross–Pitaevskii Equation

The Gross–Pitaevskii equation (9.5), when there are
no external time-dependent forces, reads

(13.1)

with the nonlinear Hamiltonian

(13.2)

Recall that Eq. (13.1) is an exact equation for the
coherent wave function [291]. The similar equation (9.10)
is an approximate equation for the mean-field order
parameter [31].

Collective excitations are described by small oscil-
lations around a stationary solution given by the sta-
tionary equation

(13.3)

One usually considers small fluctuations around the
ground-state function ϕ0(r), though, in general, one
may consider oscillations around a chosen stationary
state ϕn(r).

f 4* r( ) 1

1361/8
--------------r 1 r2 9
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------r6 1

136
---------r8+ + + + 

 
1/8–

.=

f 4*

i"
∂ϕ
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------ Ĥ ϕ( )ϕ ,=
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Let us look for the solution of Eq. (13.1) describing
small deviations from a given stationary solution ϕn(r).
To this end, we substitute the function

(13.4)

into Eq. (13.1) and linearize the latter with respect to
u(r) and v (r). Equating the like terms at the exponen-
tials exp( ), we get

(13.5)

This system of coupled equations, sometimes called the
Bogolubov–De Gennes equations, defines the eigenvalues
"ω that are the energies of the elementary excitations.
For trapped atoms, these equations are usually solved
numerically [30, 31].

As an illustration, let us consider the case of a uni-
form potential U(r) = U = const. For the ground state
wave function

(13.6)

the stationary equation (13.3) gives the energy

(13.7)

The solutions u and v  for the Bogolubov–De Gennes
equations (13.5) are plane waves of the form exp(ik · r).
Then Eq. (13.5) yields

This results in the Bogolubov spectrum

(13.8)

in which

(13.9)

is the sound velocity. In the long-wave limit, the spec-
trum (13.8) reduces to the acoustic form

(13.10)

When the potential U(r) is not a constant, the proce-
dure of calculating the spectrum of elementary excita-
tions is essentially more complicated and is usually
done numerically. But by their physical meaning, the
corresponding excitations are the analog of phonons.
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13.2. Linearization of Hydrodynamic Equations

The Gross–Pitaevskii equation (13.1) can be rewrit-
ten in the form of hydrodynamic equations. To this pur-
pose, one can present the coherent wave function in
terms of a modulus and a phase as

(13.11)

where the phase S is real and

(13.12)

The phase defines the velocity

(13.13)

so that the density current is

(13.14)

Substituting the presentation (13.11) into Eq. (13.1)
and separating the real and imaginary parts, one obtains
the continuity equation

(13.15)

and the velocity-field equation

(13.16)

Equations (13.15) and (13.16) are completely equiva-
lent to the Gross–Pitaevskii equation (13.1) and are
termed the hydrodynamic representation of the latter. If
we are interested in the stationary ground-state solu-
tions, then Eqs. (13.15) and (13.16) reduce to

(13.17)

where

and ϕ0 satisfies the equation

To analyze small deviations from the ground-state
solutions n0 and v0, one writes

(13.18)

Linearizing Eq. (13.15), one gets

(13.19)
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Linearizing Eq. (13.16), one assumes that n0 changes in
space much slower than δn,

(13.20)

Then one finds

(13.21)

Combining Eqs. (13.19) and (13.21), one comes to the
equation

(13.22)

in which

(13.23)

is a local sound velocity. For the harmonically oscillat-
ing δn, say, as cosωt , one has

(13.24)

Note that for the uniform case, when c = const and
δn ~ cosk · r, we return back to the Bogolubov spec-
trum (13.8). However, for the nonuniform case, the
local sound velocity (13.23) depends on the space vari-
able r. For low-lying excitations, one may neglect the
right-hand side of Eq. (13.24), which gives

For a spherical trap, and using the Thomas–Fermi
approximation for n0(r), the solutions to this equation
can be presented as

where  are even polynomials of degree 2n; Ylm are
spherical functions; and n, l, m are quantum numbers.
The dispersion law is given by the Stringari spectrum
[133]

(13.25)

For cylindrically symmetric traps, analytical solutions
for the spectrum of elementary excitations are available
only for some particular modes [31]. For instance, the
scissors mode, generated by a sudden rotation of the
confining trap [146], has the frequency

with the Thomas–Fermi approximation being again
involved.
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13.3. Lagrangian Variational Technique

For solving complicated nonlinear differential equa-
tions in partial derivatives, a variational technique has
been widely used [388], which provides approximate
solutions to such equations. The basic idea of this vari-
ational method is to take a trial function with a fixed
shape but some free parameters in order to reduce the
infinite-dimensional dynamical system of partial differ-
ential equations to a set of ordinary differential equa-
tions for the variational parameters that characterize the
solution. This technique has also been applied [389] to
solve the time-dependent Gross–Pitaevskii equation
and to calculate collective-excitation frequencies.

The first step of the method is to formulate a varia-
tional problem that yields the considered differential
equation. This can be formulated as the problem of
extremizing an action

(13.26)

in which the Lagrangian

(13.27)

is expressed through the Lagrangian density. In our
case, the latter is

(13.28)

As is easy to check, the extremum condition (13.26),
resulting in the Lagrangian equation

(13.29)

where  ≡ dϕ/dt, for the Lagrangian density (13.28),
yields the Gross–Pitaevskii equation (13.1).

For the general anisotropic confining potential, it is
convenient to pass to dimensionless quantities as
defined in Section 9.3 and also to measure time in units

of . The return to the dimensional notation is done
by the substitution

The dimensionless Lagrangian density is

(13.30)

For a while, there were no approximations, so that all
transformations are exact.
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Now, instead of varying the action with respect to ψ
and ψ*, let us present the sought solution in the Gauss-
ian form

(13.31)

From the normalization (ψi , ψi) = 1, we have

Then, with the ansatz (13.31), we calculate the
Lagrangian (13.27), which can be done explicitly
because of the Gaussian dependence of the trial func-
tion (13.31) on the space variable xi . After this, we
assume that the set of yet unknown trial functions ui(t),
ai(t), αi(t), and βi(t), where i = 1, 2, 3, satisfies the
Lagrange equation

(13.32)

in which q(t) is any function from the given trial set.
This assumption reduces the infinite-dimensional prob-
lem of solving Eq. (13.1) to a finite-dimensional prob-
lem of ordinary differential equations. As is clear, the
ansatz (13.31), together with the assumption (13.32),
defines approximate solutions to Eq. (13.1), whose
accuracy cannot be controlled.

Note that the described reduction of the partial dif-
ferential equations could be done as well for a time-
dependent trapping potential U(r, t) in the Hamiltonian
(13.2). Since, till now, we have nowhere used any
linearization procedure, the reduced set of equations
can, in general, describe nonlinear motion.

From the set of equations (13.32), one can derive the
equations

(13.33)

for the center-of-condensate variables that harmoni-
cally oscillate with the bare frequencies ωi . The oscil-
lations of the atomic-cloud shape are characterized by
the frequencies ui , for which we get the equations

(13.34)
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where the standard notation

is employed. Introducing the effective cloud widths

(13.35)

one may transform Eq. (13.34) to the form

(13.36)

The stationary solutions to Eq. (13.36) are given by the
equation

(13.37)

In order to find the frequencies of collective excita-
tions, one has to consider small deviations of the vari-
ables bi near their stationary points . To this end, one
substitutes

(13.38)

into Eq. (13.36) and linearizes the latter with respect to
δbi . This results in a system of three differential linear
equations whose harmonic solutions, say of the form
cosωt, give an algebraic system of equations. Equating
the determinant of the latter system to zero, one comes
to an equation for the spectrum of collective excita-
tions. For example, following this procedure in the case

of an isotropic trapping potential, when ωi = 1,  =
b*, and neglecting the term 1 in the right-hand side of
Eq. (13.37), which assumes that s @ 1, so that

(13.39)

we obtain the system

Equating the determinant to zero yields

This leads to the spectrum

(13.40)

The equations for the effective cloud widths bi ,
similar to Eq. (13.36), can also be derived [31] from the
hydrodynamic equations (13.15) and (13.16), by
assuming the harmonic dependence of the density
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n(r, t) on the space coordinates and a special form of
the velocity v(r, t).

CHAPTER 14.
MULTICOMPONENT BOSE MIXTURES

Multicomponent systems of trapped Bose–Einstein
condensates have been realized for rubidium in a mag-
netic trap [7, 123] and for sodium in an optical trap
[78, 125, 126]. There exists a number of works with
theoretical treatment of such systems (see [7, 390–392]
and references therein).

14.1. Coherent States of Mixtures

The Hamiltonian of a multicomponent Bose mix-
ture has the form

(14.1)

in which the index i = 1, 2… enumerates the compo-
nents; mi is a mass; Ui(r, t) is an external field including
the trapping potential; the interaction potential Φij has
the symmetry properties

and ψi(r, t) are field operators satisfying the Bose com-
mutation relations,

The evolution equations for the field operators are
given by the Heisenberg equations that can be written
in one of two equivalent forms: in the commutator form

or in the variational representation

Any of these representations yield the same equation

(14.2)

in which

(14.3)
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Coherent states can be defined as is described in
Section 8, with a straightforward generalization for a
mixture. The coherent state hi for the i-component is an
eigenvalue of the destruction operator ψi , so that

(14.4)

The coherent state for a multicomponent system is
given by the tensor product

The action of an operator ψi on the state h is defined as

Multiplying Eq. (14.2) from the left by h+ and from the
right by h, we obtain the evolution equation

(14.5)

for the coherent field ηj(r, t), with the effective nonlin-
ear Hamiltonian

(14.6)

By means of the notation

(14.7)

we may introduce the coherent field ϕi normalized to
unity, (ϕi , ϕi) = 1, so that Ni plays the role of the num-
ber of particles in the i-component. Then, for the nor-
malized coherent field, the evolution equation is

(14.8)

with the nonlinear Hamiltonian

(14.9)

In the case of a dilute system of atoms, whose scat-
tering lengths aij satisfy the inequality

(14.10)

in which a is the mean interatomic distance, one may
model the interaction potential by the Fermi pseudopo-
tential

(14.11)

ψi r t,( )hi η i r t,( )hi.=

h ⊗ ihi.=

ψi r t,( )⊗ j1̂ jh η i r t,( )h.=

i"
∂
∂t
-----η j r t,( ) H j η( )η j r t,( )=

H j η( ) "
2∇ 2

2m j

------------– U j r t,( )+=

+ Φij r r'–( ) η i r' t,( ) 2 r'.d∫
i

∑

η i r t,( ) Niϕ i r t,( ),=

i"
∂
∂t
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with the interaction amplitude

(14.12)

By assumption, aij = aji , hence Aij = Aji . Then the non-
linear Hamiltonian (14.9) becomes

(14.13)

The stationary solutions of Eq. (14.8), when the
external potential Uj(r) does not depend on time, can be
presented as

(14.14)

with the coherent modes ϕj(r) defined by the eigen-
problem

(14.15)

Note that, in the same way as for single-component
systems, the evolution equation (14.8) is an exact equa-
tion for the coherent field ϕj(r, t). So is the eigenprob-
lem (14.15) for the coherent mode ϕj(r) in the station-
ary case.

14.2. Branching of Excitation Spectrum

The spectrum of collective excitations for a multi-
component Bose mixture can be defined by means of
the same methods as for a one-component system, as is
described in Chapter 13. For instance, one may linear-
ize the nonlinear equation (14.8) after substituting there

(14.16)

The linearization with respect to the functions uj and v j

yields the system of equations

(14.17)

where (ϕ) is defined on stationary solutions ϕi(r).
For a nonuniform system, Eqs. (14.17) are to be

solved numerically. In order to demonstrate the main
specific features distinguishing the case of a mixture
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from that of a single-component system, let us consider
the uniform case, when the external potential Uj =
const. This case can be treated as a uniform approxima-
tion for a large trap. In this approximation, the ground-
state stationary solutions of Eq. (14.15) can be written
as

(14.18)

and the corresponding energies as

(14.19)

Then uj and v j are presented by plane waves of the form
eik · r. Therefore, we have

and a similar relation for v j . Using this, we may present
Eqs. (14.17) in the form

(14.20)

To simplify the consideration, let us analyze the case of
a two-component mixture. Then Eqs. (14.20) form a
system of four linear algebraic equations. The condi-
tion of having nontrivial solutions is that the determi-
nant be zero. This condition can be presented as

(14.21)

where  is the dynamical matrix, whose elements are

To write down Eq. (14.21) explicitly, it is convenient to
introduce the following notation:
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which would define a single-component spectrum with
the sound velocity

(14.23)

and let us also denote

(14.24)

with

(14.25)

Then from Eq. (14.21), we find

(14.26)

The latter equation yields for the spectrum

(14.27)

This means that, instead of one branch (13.8) for the
spectrum of collective excitations of a single-compo-
nent system, we now have a two-branch spectrum,
given by Eq. (14.27) for a two-component mixture. In
general, for an n-component mixture, we should have n
branches of the excitation spectrum.

In the long-wave limit, Eq. (14.27) gives two acous-
tic branches

(14.28)

with the corresponding sound velocities c± defined by
the expression

(14.29)

In the short-wave limit, one has two single-particle
branches

(14.30)

The two branches of the collective spectrum of a
two-component mixture can be interpreted in the fol-
lowing way. One branch, ω+(k), describes the oscilla-
tion of the total density of the mixture, when both com-
ponents move together. And another branch, ω–(k),
characterizes the relative fluctuations of the compo-
nents with respect to each other. It is worth noting that
neither of the sound velocities c± coincides with the
hydrodynamic sound velocity c defined by the deriva-
tive c2 ≡ ∂P/∂ρm , in which P is pressure and ρm is mass
density.

14.3. Dynamic and Thermodynamic Stability

The mixture of trapped atoms is not always stable
and it may stratify into subsystems of pure one-compo-

ci
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-----Aii, ρi niNi;≡ ≡

ω12
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k
2≡
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ω± k( ) . 
k

2

2m j

--------- k ∞( ).

nent phases [7, 390–392] in the same way as it happens
for uniform Bose mixtures [393–395]. The criteria of
stability can be separated into dynamic and thermody-
namic ones.

The system is dynamically stable if its spectrum of
collective excitations is positive everywhere, except for
a countable number of points where it is zero. For a uni-
form two-component Bose mixture, the condition of
dynamic stability is

(14.31)

With the spectrum (14.27), this gives

(14.32)

Since ω–(k) ≤ ω+(k), we actually need to analyze stabil-
ity only for the branch ω–(k). This branch describes rel-
ative oscillations of components with respect to each
other. When ω–(k) becomes negative, the mixture is
unstable with respect to the stratification of the compo-
nents.

In the long-wave limit, k  0, the inequality
(14.32) reduces to

(14.33)

Using Eqs. (14.23) and (14.25), we have

(14.34)

Taking account of the relation (14.12), we find the con-
dition of dynamic stability for the scattering lengths,

(14.35)

The equality

(14.36)

defines the stratification boundary. It is interesting that
the condition of dynamic stability is the same for uni-
form as well as for trapped mixtures [391, 392].

The system is thermodynamically stable if its free
energy is minimal. At zero temperature, free energy
coincides with internal energy. Here, we consider the
case when the whole system is in a coherent state, so
that we need to compare the average energies of the
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given coherent state for the mixture and for the strati-
fied system. The Hamiltonian of the latter writes

(14.37)

This describes independent pure components separated
in their own regions of space.

For simplicity, we again employ the uniform
approximation when the coherent field for each compo-
nent can be written as

(14.38)

according to the case of a mixed or stratified system,
respectively. For a two-component system, one has

(14.39)

We assume that all particles N1 and N2 are in their
coherent states characterized by the ground-state
coherent fields (14.38). Then the quantum coherent
average of the Hamiltonian (14.1) gives the energy of
the mixture

(14.40)

And the quantum coherent average of the Hamiltonian
(14.37) yields the energy

(14.41)

of the stratified system.
The condition of thermodynamic stability is

(14.42)

From here, we find

(14.43)

In an important case, when A11 and A22 are positive,
condition (14.43) reduces to

(14.44)
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i

∑ Vi,
i
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2—2

2mi

------------– Ui r t,( )+ ψi r t,( ) rd

Vi
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+
1
2
--- ψi

† r t,( )ψi
† r' t,( )Φii r r'–( )ψi r' t,( )ψi r t,( ) r r'.dd

Vi

∫

ϕ i r( )
V

1/2–
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Vi
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=

N N1 N2, V+ V1 V2.+= =

H〈 〉 N N1U1 N2U2+=

+
N1

2
A11 N2

2
A22 2N1N2A12+ +

2 V1 V2+( )
--------------------------------------------------------------------.

Hstr〈 〉 N N1U1 N2U2
N1

2
A11

2V1
---------------

N2
2
A22

2V2
---------------+ + +=

H〈 〉 N Hstr〈 〉 N–( ) 0.<

N1
2
V2

2
A11 N2

2
V1

2
A22 2N1N2V1V2A12–+ 0.>

N1V2 A11 N2V1 A22–( )2

+ 2N1N2V1V2 A11A22 A12–( ) 0.>

To be stable in general, any system has to be both
dynamically as well as thermodynamically stable, so
that both conditions (14.34) and (14.43) be valid. Let us
analyze the relation between these conditions for dif-
ferent particular cases:

(i) A11, A22, A12 > 0. The condition of dynamic stabil-
ity (14.34) is stronger than that of thermodynamic sta-
bility (14.43) in the sense that from the former the latter
follows. Dynamic stability is sufficient for thermody-
namic stability, although not necessary. A system can
be thermodynamically stable, but not dynamically sta-
ble. Conversely, thermodynamic instability yields
dynamic instability.

(ii) A11, A22 > 0, A12 < 0. The mixture is always ther-
modynamically stable, but not necessarily dynamically
stable.

(iii) A11 and A22 are of different signs, while A12 is of
arbitrary sign. The system is never dynamically stable,
although it can be thermodynamically stable.

(iv) A11, A22 < 0, A12 > 0. The system is never ther-
modynamically stable, but can be dynamically stable.

(v) A11, A22, A12 < 0. Then inequality (14.43) can be
transformed into

The latter inequality cannot be compatible with condi-
tion (14.34), so that dynamic stability leads to thermo-
dynamic instability and thermodynamic stability pro-
vokes dynamic instability.

Summarizing this analysis, we conclude that the
two-component Bose mixture is both dynamically and
thermodynamically stable provided that

(14.45)

and condition (14.34) is valid.
Here, we have analyzed the conditions of stability

for a coherent mixture. The same conditions can be
obtained for a liquid mixture with broken gauge sym-
metry, when only a fraction of atoms are in the Bose
condensate [393, 394], and also for a normal mixture of
Bose liquids without broken gauge symmetry [395].

The first experiments [7, 123] involving multiple-
species condensates were performed with 87Rb atoms
evaporatively cooled in the |F = 2, mF = 2〉  and |1, –1〉
spin states. The scattering lengths, known at the 1%
level, are in the proportion a11 : a12 : a22 = 1.03 : 1 : 0.97,
with the average of three being 55 Å [122]. For equal
masses m1 = m2, the stability condition (14.35) reads

a11a22 > . In the case of 87Rb, one has a11a22/  =
0.9991 < 1. Hence, these two condensates cannot com-
pose a uniform mixture. The Bose condensates of
sodium [78, 125, 126] in two different internal states
|F = 1, mF = 0〉  and |1, 1〉  have the scattering lengths

N1V2 A11 N2V1 A22–( )2

+ 2N1N2V1V2 A11A22 A12–( ) 0.<

A11 0, A22 0,> >

a12
2

a12
2
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a11 = a12 = 2.75 × 10–9 cm and a22 = 2.65 × 10–9 cm.

From here, one has a11a22/  = 0.964 < 1, thence these
condensates cannot be mixed.

14.4. Stratification of Moving Components

It is possible to experimentally create a binary mix-
ture of trapped Bose–Einstein condensates with a rela-
tive motion of components [123]. The presence of such
a motion should impose additional constraints on the
stability of a mixture.

Consider a coherent mixture of components, each of
which moves with a constant linear velocity Vj . For the
sake of simplicity, let us again invoke the uniform
approximation, when the ground-state coherent field of

an immovable component is . Then for a moving
component, because of the Galilean transformation,
one has

(14.46)

The eigenvalue of Eq. (14.15) becomes

(14.47)

where ρi ≡ niNi . As compared to the ground-state
energy (14.19), we have here an additional term corre-
sponding to the kinetic energy of motion. Similarly, for
the coherent averages of the Hamiltonians (14.1) and
(14.37), we would obtain the expressions (14.40) and

(14.41) with additive terms . These terms

cancel each other when analyzing the condition
(14.42). Hence, thermodynamic stability is not affected
by such a motion of components.

To check dynamic stability, we need to find the
spectrum of collective excitations given by the frequen-
cies ω satisfying Eqs. (14.17). The solutions uj and v j to
the latter equations, in the case of the coherent fields
(14.46), depend on the space variable as

which is required for ϕj(r, t) to have the same Galilean
transformation as ϕj(r). Then it follows that

Therefore, Eqs. (14.17) retain practically the same
form, but with the frequency ω shifted as

a12
2

n j

ϕ j r( ) n je
ik j r⋅

, k j
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i

∑ 1
2
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2
,+ +=
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2
--- m jV j

2

j∑

u j e
i k k j+( ) r⋅

, v j e
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,∼ ∼

Ĥ j ϕ( ) E j–( )u j K j "k V j⋅+( )u j,=

Ĥ j ϕ( ) E j–( )v j K j "k– V j⋅( )v j.=

ω ω εj, ε j– k V j,⋅≡

which corresponds to the Doppler shift.

Consider now a binary mixture. Without loss of gen-
erality, we may connect the system of coordinates with
one of the components, say with the first one, so that
V1 = 0. Then V2 ≡ v is the velocity of the second com-
ponent with respect to the first. The dynamical matrix

 = [Dij] in the spectral equation (14.21) has the same
elements except

In general, instead of Eq. (14.26), we now have

(14.48)

In the chosen system of coordinates, connected with the
first component, Eq. (14.48) simplifies to

(14.49)

where

(14.50)

The spectral equation (14.49) is the fourth-order alge-
braic equation

(14.51)

As we know, this equation can define not more than two
stable, that is positive, solutions for the spectrum ω±(k).
By Descartes theorem, the necessary condition for
Eq. (14.51) to possess two positive solutions for arbi-
trary ε ∈ [–kv, +kv] is

(14.52)

Since this inequality is to be true for all ϑ  ∈  [0, π], we
can put here the maximal ε = kv. In this way, we obtain

(14.53)

In the long-wave limit, k  0, this gives

(14.54)

Even if the immovable components do mix, they strat-
ify as soon as the relative velocity reaches the critical
value

(14.55)

The stratification appears first inside the cone of the
angle

(14.56)
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With the notations (14.23) and (14.25), the condition
(14.54) becomes

(14.57)

while for the critical velocity (14.55) one gets

(14.58)

Invoking the relation (14.12), we find the stability con-
dition

(14.59)

expressed through the atomic scattering lengths. And
the squared critical velocity (14.58) takes the form

(14.60)

The value of the critical velocity (14.60) depends on the
parameters of the species involved. For instance, in the
case of alkali atoms, m2/" ~ 105 s/cm2, a11 ~ a12 ≈
5.5 × 10–7 cm, from where

Typical atomic-trap condensate densities are ρ2 ~
1012−1015 cm–3. But what is needed first of all in order
to have a finite critical velocity is that immovable com-
ponents could be mixed, which requires the positive-
ness of the expression in the square bracket of
Eq. (14.60).

14.5. Mixing by Feshbach Resonance

By definition, Feshbach resonances involve inter-
mediate states that are quasi-bound [396]. These inter-
mediate states are not bound in the true sense, as they
acquire a finite lifetime due to the interaction with con-
tinuum states of other scattering channels. The metasta-
ble objects, formed in the process of the Feshbach res-
onance atom–atom scattering, are molecules with elec-
tronic and nuclear spins that have been rearranged from
the spins of the colliding atoms by virtue of the hyper-
fine interaction. It is important that the difference of the
initial and intermediate state energies can be varied by
means of an external magnetic field. The effective scat-
tering length that describes the low-energy binary col-
lisions similarly varies with the near-resonant magnetic
field. Thus, employing the Feshbach resonances, it is
possible to create two-component mixtures consisting
of atoms and of molecules formed by these atoms.
Since the overlapping components can be either stable
or unstable with respect to stratification, depending on
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the relation between their scattering lengths, one could
render the components miscible or immiscible by vary-
ing their scattering lengths. The Feshbach resonances
were recently observed in ultra-cold atomic gases of
87Rb [12] and 23Na [11]. An important feature of the
experiment [11] is that the Feshbach resonances were
observed in an atomic Bose-condensed system. In this
way, it looks feasible to create a two-component system
of Bose-condensed atoms and molecules, with rather
rich properties and with a variety of applications [26].

When two atoms of mass m1 each form a Feshbach
quasi-molecule, the mass of the latter is

(14.61)

Starting with a total number of atoms in a trap, N, one
can form, via the magnetically controlled Feshbach res-
onance, N2 molecules coexisting with N1 unbound
atoms. Then, between the number of unbound atoms
and that of molecules, there is the relation

(14.62)

This conservation law for the total number of atoms
imposes the relation

(14.63)

between the chemical potentials of molecules, µ2, and
of unbound atoms, µ1.

The Hamiltonian of an atomic-molecular mixture
can be presented as

(14.64)

where the last two terms describe the atom–molecule
reaction with a transition amplitude having the symme-
try properties

(14.65)

Note that the global gauge symmetry, connected
with the transformation ψj  eiαψj is broken for the
Hamiltonian (14.64). However, it possesses the gauge
symmetry with respect to the transformation

(14.66)
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which is related to the atom-number conservation law
(14.62). The anomalous averages

(14.67)

and alike, which are not invariant with respect to the
gauge transformation (14.66), are zero. But the aver-
ages like

(14.68)

that are invariant with respect to the transformation (14.66),
are not zero.

The Heisenberg equations for the atomic, ψ1, and
molecular, ψ2, field operators can be written as

(14.69)

where the notation

(14.70)

is used.
Assuming dilute gases, one models the interaction

potentials and transition amplitudes by local functions

(14.71)

Supposing that the whole mixture is in a coherent state,
one has for the corresponding coherent fields

(14.72)

where ρj ≡ Nj/V and

(14.73)

Looking for stationary solutions of Eqs. (14.72) in
the standard form (14.14), we see that the related ener-
gies Ej are connected with each other by the relation

(14.74)

ψ j〈 〉 ψ iψ j〈 〉 0,= =

ψ1ψ1ψ2〈 〉 ψ 2ψ2ψ1〈 〉 0,= =

ψ1
†ψ1

†ψ2〈 〉 0,≠

i"
∂
∂t
-----ψ1 r t,( ) H1 ψ( )ψ1 r t,( )=

+ ψ1
† r t,( ) Θ12 r r'–( )ψ2 r' t,( ) r',d∫

i"
∂
∂t
-----ψ2 r t,( ) H2 ψ( )ψ2 r t,( )=

+
1
2
--- Θ12 r r'–( )ψ1 r' t,( )ψ1 r' t,( ) r',d∫

Hi ψ( ) "
2—2

2mi

------------– µi + Ui r t,( )–≡

+ Φij r r'–( )ψ j
† r' t,( )ψ j r' t,( ) r'd∫

j

∑

Φij r( ) Aijδ r( ), Θ12 r( ) B12δ r( ).= =

i"
∂
∂t
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Introducing the notation

(14.75)

we obtain the following equations for the stationary
coherent fields:

(14.76)

Wanting to study collective excitations in this react-
ing mixture, we may linearize Eqs. (14.72) after substi-
tuting there the form (14.16). This results in the system
of four equations

(14.77)

where (ϕ) are defined for the stationary states ϕi(r).

In the uniform approximation (14.18), the stationary
equations (14.76) yield

(14.78)

Under given values for A11, A12, A22, and B12,
Eq. (14.78) defines the relation between the atomic
density ρ1 and the molecular density ρ2. Since ρi ≡ niNi ,
this means that the number of unbound atoms N1 and
that of molecules N2 are not arbitrary but are related
with each other through Eqs. (14.78).
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Keeping in mind the uniform approximation, when
ni = 1/V, and looking for the solutions of Eqs. (14.77) in
the form of plane waves eik · r, we come to the equations

(14.79)

The spectral equation can be presented as in Eq. (14.21),
but with the dynamic matrix having the elements

The general form of the spectral equation is rather cum-
bersome, so we shall not write it down. Some particular
cases have been studied in [26].

Similarly to Section 14.3, we can study the stability
conditions for the atom–molecule mixture. For exam-
ple, to find the condition of dynamic stability, we need
to find the inequality guaranteeing the positiveness of
the collective excitation spectrum corresponding to the
oscillation of components with respect to each other. To
derive the condition of thermodynamic stability, we
have to compare the coherent average of the mixture
Hamiltonian (14.64), which in the uniform approxima-
tion is
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with the energy (14.41) of a stratified system, where Ui

is to be replaced by Ui – µi . Then the condition of ther-
modynamic stability (14.42) becomes

The sufficient stability conditions for each component
separately are A11 > 0 and A22 > 0. If so, the condition
of thermodynamic stability of the mixture reads

From here, the sufficient condition of thermodynamic
stability is

(14.80)

where ρ2 ≡ N2/V. Since the low-energy Feshbach reso-
nances make it feasible to vary the effective scattering
lengths by a near-resonant external magnetic field, one
could realize different experiments with stable mix-
tures as well as with stratifying components.

CHAPTER 15.
TOPOLOGICAL COHERENT MODES

Coherent modes are defined in Chapter 8 as station-
ary solutions of the Gross–Pitaevskii equation. The
ground-state coherent mode, with a single-particle
energy E0, corresponds to the Bose–Einstein conden-
sate. In an equilibrium statistical system, the Bose-con-
densed state is always the ground single-particle state.

An intriguing question is whether one could create
non-groundstate condensates of Bose atoms, that is, a
macroscopic occupation of a non-ground single-parti-
cle state. Clearly, if this is possible, this could be done
only in a nonequilibrium system. Second, in order to
transfer atoms from a single-particle ground state, with
an energy E0, to another state of higher energy Ej , one
should subject the system to the action of a resonance
field with a frequency close to the transition frequency
(Ej – E0)/". Hence, this is to be a resonance process.

The possibility of the resonance formation of non-
groundstate condensates of Bose atoms was first
advanced in [139], these condensates being associated
with excited coherent modes. Such nonlinear coherent
modes have also been considered recently in [140, 397,
398]. One often terms these excited coherent modes as
topological in order to stress their distinction from ele-
mentary collective excitations. The latter correspond to
small linear oscillations around a state, thence these
small oscillations do not change the macroscopic den-
sity distribution in space. But different coherent modes

N1
2
V2

2
A11 N2

2
V1

2
A22 2N1N2V1V2A12–+

– 2N1 N2VV1V2B12 0.>

N1V2 A11 N2V1 A22–( )2

+ 2N1N2V1V2 A11 A22 A12–( )

– 2N1 N2VV1V2B12 0.>

A11 A22 A12
B12

ρ2

---------+ 
  2

,>
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have principally different space dependence, because
of which they are termed topological.

15.1. Resonance Field Modulation

The Gross–Pitaevskii equation, describing a coher-
ent field ϕ = ϕ(r, t), is

(15.1)

where, in addition to the nonlinear Hamiltonian

(15.2)

we include a resonant field

(15.3)

We assume that at the initial time the system is Bose-
condensed to the ground state

(15.4)

characterized by the energy E0.

The transition frequencies between coherent modes
are given by the equation

(15.5)

in which the spectrum of coherent modes is defined by
the eigenproblem

Suppose that our aim is to transfer atoms from the
ground state ϕ0 to a chosen state ϕj. Therefore, we
require that the frequency of the modulating field (15.3)
be close to the transition frequency

(15.6)

The closeness implies the quasiresonance condition

(15.7)

Another important requirement is that the spectrum of
coherent modes be not equidistant [139]. In fact, if that
were the case, then the pumping of atoms from the
ground state to the chosen particular state would, at the
same time, induce transitions from the latter to another
equidistant state and from the latter to even higher equi-
distant states. Thus, all atoms would be dispersed over
all states making it impossible to achieve a macro-
scopic population of one of them. Fortunately, as is
shown in Chapters 10 and 11, the spectrum of coherent
modes is not equidistant because of the nonlinearity
induced by atomic interactions.

i"
∂ϕ
∂t
------ Ĥ ϕ( ) V̂ res+[ ]ϕ ,=

Ĥ ϕ( ) "
2

2m0
---------—2– U r( ) NA ϕ 2,+ +=

V̂ res V1 r( ) ωtcos V2 r( ) ωt.sin+=

ϕ r 0,( ) ϕ0 r( ),=

"ωmn Em En,–≡

Ĥ ϕn( )ϕn Enϕn.=

ωj

E j E0–
"

-----------------.≡

∆ω
ω

--------  ! 1, ∆ω ω ωj.–≡

Let us look for the solution of Eq. (15.1) in the form
of the sum

(15.8)

over the coherent modes

It is worth noting that the presentation (15.8) does not
require the set {ϕn(r)} to form a complete basis. As can
be checked in any textbook on Quantum Mechanics or
Functional Analysis, the property of completeness of a
basis presupposes that an arbitrary function from the
considered Hilbert space could be presented as an
expansion over this basis. We do not require here such
a restrictive property for all functions, but we invoke
just the sole expansion, looking for a solution in the
form of (15.8).

What we need in the following is the assumption
that the coefficients cn(t) in the sum (15.8) vary in time
slower than the exponentials in ϕn(r, t), that is,

(15.9)

Looking for a solution in the form (15.8), one has to
substitute it into Eq. (15.1). To obtain equations for the
coefficients cn(t), one may invoke the averaging tech-
niques [399]. This is possible because, according to the
inequality (15.9), the functions cn(t) can be classified as
slow, compared to the fast functions exp(–iEnt/").
Thus, cn(t) can be treated as quasi-invariants. Multiply-

ing Eq. (15.1) by (r, t) and integrating the result
over r and averaging over time as

(15.10)

keeping cn as quasi-invariants, one obtains an equation
describing the guiding centers for cn(t). Averaging over
time, one uses the equalities

The latter assume that the spectrum En is nondegener-
ate. Generally, in the presence of the nonlinear term in
the Hamiltonian (15.2), this is true. But even if the
spectrum En were degenerate, one could avoid compli-

ϕ r t,( ) cn t( )ϕn r t,( )
n

∑=

ϕn r t,( ) ϕn r( ) i
"
---Ent– 

  .exp=

dcn

dt
--------  ! En.

ϕn*

1
τ
--- F t( ) t,d

0

τ

∫τ ∞→
lim

1
τ
--- i

"
--- Em En–( )t

 
 
 

exp td

0

τ

∫τ ∞→
lim δmn,=

1
τ
--- i

"
--- Em Ek En– El–+( )t

 
 
 

exp td

0

τ

∫τ ∞→
lim

=  δmnδkl δmlδnk δmkδknδnl.–+
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cations in the following way. One may add to the
Hamiltonian (15.2) a term lifting the degeneracy and to
set this term to zero at the end of the calculations.

Note that normalizing the function (15.8) as
(ϕ, ϕ) = 1, one gets

Averaging this over time, according to the rule (15.10)
and invoking condition (15.9), gives

(15.11)

From here a useful relation follows:

Substituting the form (15.8) into Eq. (15.1) and
accomplishing the described time-averaging procedure
results in the equation

(15.12)

in which the amplitude

(15.13)

is due to the nonlinear term in the Hamiltonian (15.2),
while the transition amplitude

(15.14)

is related to the resonant modulating field (15.3). In the
process of the time averaging (15.10), the function
exp(i∆ωt) is also treated as slow because of the qua-
siresonance condition (15.7).

Equation (15.12) shows that the resonant field
induces transitions only between the ground-state and a
chosen j-level. At first glance, the nonlinear term, being
nonresonant, could induce transitions between all levels,
changing the corresponding fractional populations

(15.15)

However, from Eq. (15.12) it follows that for all levels
m ≠ 0, j, except the two selected resonant levels, one has

cm* t( )cn t( ) ϕm ϕn,( )e
iωmnt–

mn

∑ 1.=

cn t( ) 2

n

∑ 1.=

cn t( ) 2 1 cm t( ) 2.
m ≠n( )
∑–=

dcn

dt
-------- i αnm cm

2cn

m ≠n( )
∑–=

–
i
2
---δn0βc je

i∆ωt i
2
---δnjβ*c0e i∆ωt– ,–

αnm A
N
"
---- ϕn r( ) 2 2 ϕm r( ) 2 ϕn r( ) 2–( ) rd∫≡

β 1
"
--- ϕ0* r( )V r( )ϕ j r( ) r,d∫≡

V r( ) V1 r( ) iV2 r( ),–≡

nm t( ) cm t( ) 2.≡

d
dt
-----nm t( ) 0 m 0 j,≠( ).=

This, with the initial condition nm(0) = 0, yields

Similarly, cm(t) = 0 for all m ≠ 0, j. Therefore,
Eq. (15.12) is equivalent to the system of two equations

(15.16)

The initial conditions to these equations, according to
Eq. (15.4), are

(15.17)

The equations for the fractional populations (15.15)
immediately follow from Eqs. (15.16) giving

(15.18)

with the corresponding initial conditions

resulting from the conditions (15.17). The normaliza-
tion (15.11) for the fractional populations reduces to
the equation

(15.19)

In what follows, for the simplicity of notation, we write

(15.20)

and set α0j = αj0.

Note that in deriving Eqs. (15.16), the orthogonality
of the coherent modes ϕm(r) and ϕn(r), for m ≠ n, has
not been assumed. What is used is the condition (15.9)
permitting one to invoke the averaging technique [399].
In addition, employing for these modes the solutions of
Chapter 10, one can check that |(ϕm, ϕn)| are less or of
order 0.1 if m ≠ n. Hence the coherent modes can be
treated as approximately orthogonal since |(ϕm, ϕn)| ! 1
for m ≠ n.

The solutions to Eqs. (15.16) and (15.18) can be
obtained analytically, provided the inequality

(15.21)

holds true. In that case, one can again resort to the aver-
aging technique [399], being based on the fact that the
functions c0(t) and cj(t) can be classified as fast, com-
pared to the slow functions n0(t) and nj(t). With the
slow functions treated as quasi-invariants, Eqs. (15.16)

nm t( ) 0 m 0 j,≠( ).=

dc0

dt
-------- iα0 jn jc0–

i
2
---βc je

i∆ωt,–=

dc j

dt
------- iα j0n0c j–

i
2
---β*c0e i∆ωt– .–=

c0 0( ) 1, c j 0( ) 0.= =

dn0

dt
-------- Im βei∆ωtc0*c j( ),=

dn j

dt
-------- Im β*e i∆ωt– c j*c0( ),=

n0 0( ) 1, n j 0( ) 0,= =

n0 t( ) n j t( )+ 1.=

α α 0 j≡

β
α
---  ! 1
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are linear equations with respect to c0(t) and cj(t),
which gives

(15.22)

where the collective frequency Ω , defined by the equal-
ity

(15.23)

is introduced. Comparing our case with the resonant
excitation of atoms in optics [296], we see that |β| plays

the role of the Rabi frequency, while  is
what is called the effective Rabi frequency. The quan-
tity Ω , defined in Eq. (15.23), differs from the effective
Rabi frequency by the presence of the term containing
the interaction amplitude α. Because of this, in our
case, Ω could be called the collective Rabi frequency,
although it is not a parameter but a function depending
on time through the fractional populations n0(t) and
nj(t). For the latter, we get

(15.24)

If at some finite time t0, the modulation field (15.3)
is switched off, then, as follows from Eqs. (15.18), the
fractional populations stand constant, with the values
n0(t0) and nj(t0). Then, we have a mixture of two topo-
logical modes. This mixture will, of course, not exist
for ever, but during the lifetime of the corresponding
modes limited by atomic collisions. For instance, the
loss rates caused by binary depolarizing collisions can
be estimated as

(15.25)

where λij are the related loss-rate coefficients and n0 =
n0(t0) and nj = nj(t0).

A modulating field (15.3) that is not monochromatic
but characterized by a frequency distribution ρ(ω) that
is centered at ωj will cause heating of the system due to

c0
Ωt
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α n0 n j–( ) ∆ω–

Ω
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2
------sin+cos=

× i
2
--- α ∆ω–( )t–

 
 
 

,exp

c j i
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2
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,expsin–=
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2
------, n jsin

2
–

β 2
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2
------.sin

2
= =

γ0 λ00N2n0
2 ϕ0 r( ) 4 rd∫=

+ λ0 jN
2n0n j ϕ0 r( ) 2 ϕ j r( ) 2 r,d∫

γ j λ jjN
2n j

2 ϕ j r( ) 4 rd∫=

+ λ j0N2n jn0 ϕ j r( ) 2 ϕ0 r( ) 2 r,d∫

nonresonant transitions [400]. The corresponding heat-
ing rate can be expressed as the sum

in which

If the density of frequencies ρ(ω) is sharply centered,
say as ρ(ω) ≈ δ(ω – ωj0), then the heating rate is close
to zero.

15.2. Critical Dynamic Effects

The solution (15.22) to the evolution equations (15.16)
has been obtained by using the averaging technique
[399], which requires the inequality (15.21). Wanting
to analyze the behavior of solutions to Eqs. (15.16)
under an arbitrary relation between α and β, we have to
solve these equations numerically. This behavior turned
out to be surprisingly rich exhibiting unexpected criti-
cal effects [401].

For the numerical analysis of Eqs. (15.1), it is con-
venient to introduce the dimensionless parameters

(15.26)

and to perform a scaling, measuring time in units of
α−1. To return back to dimensional time, one has to
make the substitution

(15.27)

We solve [401] the system of Eqs. (15.16) for different
values of the parameters (15.26), keeping in mind that
the dimensionless detuning is small,

δ ! 1. (15.28)

Varying the parameters (15.26), we find [401] that there
exists a bifurcation line, described by the relation

(15.29)

at which the qualitative behavior of solutions changes
abruptly.

To illustrate the drastic change in the behavior of
solutions, when crossing the bifurcation line (15.29),
let us first fix b = 0.4999 and vary the detuning δ.
Figure 36 presents the fractional populations n0(t) and
nj(t), defined as in Eq. (15.15), time being measured in
units of α–1. In Fig. 36a, the detuning is zero, δ = 0, and
the behavior of the fractional populations approxi-
mately follows the law (15.24). Slightly changing the
detuning to δ = 0.0001 essentially transforms the
behavior to that in Fig. 36b, where the top of nj(t) and
the bottom of n0(t) become flat, touching each other,

Γheat 2π βn0
2ρ ωn0( ),

n ≠ j( )
∑=

βn0
1
"
--- ϕn* r( )V r( )ϕ0 r( ) r.d∫≡

b
β
α
------, δ ∆ω

α
--------≡ ≡

t
t
α
---.

b δ 0.5,≈+



LASER PHYSICS      Vol. 11      No. 6      2001

BOSE–EINSTEIN CONDENSATION OF TRAPPED ATOMIC GASES 763

while the oscillation period is approximately doubled.
Shifting the detuning by a tiny portion to δ = 0.0001001
results in Fig. 36c, where the period is again doubled,
and there appear the upward cusps of nj(t) and the
downward cusps of n0(t). Increasing a little the detun-
ing to δ = 0.00011 squeezes the oscillation period
twice, as is shown in Fig. 36d. Similar changes happen
when crossing the bifurcation line under a fixed detun-
ing and a varied transition amplitude, as illustrated in
Fig. 37.

The unusual behavior of the fractional populations
is due to the nonlinearity of the evolution equations
(15.16). It is known that systems of nonlinear differen-
tial equations can possess qualitatively different solu-
tions for parameters differing by infinitesimally small
values. The transfer from one type of solutions to
another qualitatively different type is termed in the the-
ory of dynamical systems bifurcation [402]. At a bifur-
cation point, dynamical system is structurally unstable.
Bifurcations in dynamical systems are somewhat anal-
ogous to phase transitions and critical phenomena in
equilibrium statistical systems [403]. To elucidate this
analogy for the present case, we have to consider the
time-averaged properties of the system, which can be
done as follows. First, it is necessary to define an effec-
tive Hamiltonian generating the evolution equations

(15.16). This can be done by noticing that these equa-
tions can be presented in the Hamiltonian form

(15.30)

with the effective Hamiltonian

(15.31)

Substituting here the approximate solutions (15.22)
yields

The latter, with the normalization (15.20), gives

(15.32)

Averaging the fractional populations (15.24) over the
explicit time and using this averaged quantity in the
collective frequency (15.23), one has the averaged pop-
ulation

(15.33)

i
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Fig. 36. The fractional populations n0(t) (dashed line) and nj(t) (solid line) as functions of dimensionless time, measured in units

of  α–1. The transition amplitude is fixed, b = 0.4999, and the detuning is varied: (a) δ = 0; (b) δ = 0.0001; (c) δ = 0.0001001;
(d) δ = 0.00011.
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in which the averaged collective frequency is given by
the equality

(15.34)

The effective average energy can be defined by taking
the effective Hamiltonian (15.32) with nj replaced by
the averaged population (15.33), which gives

(15.35)

To study a kind of thermodynamics of the so defined
effective system, it is possible to introduce the follow-

Ω2 α 1 2n j–( ) ∆ω–[ ] 2 β 2.+=

Eeff αn j
2 n j∆ω.+=

ing characteristics. The pumping capacity

(15.36)

describes the capacity of the system to store the energy
pumped into it by the modulating field. The order
parameter

(15.37)

characterizes the level of excitation, being η = 1 for a
system in the ground state and η = –1 for a completely
excited system. The detuning susceptibility

(15.38)

Cβ
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∂ β
-----------≡

η n0 n j–≡ 1 2n j–=

χδ
∂η
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Fig. 37. The time dependence of the fractional populations n0(t) (dashed line) and nj(t) (solid line) under the fixed detuning δ = 0
and varied transition amplitude: (a) b = 0.45; (b) b = 0.4999; (c) b = 0.5; (d) b = 0.5001; (e) b = 0.6; (f) b = 1.
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defines how a variation of detuning influences the order
parameter.

It is convenient to pass again to the dimensionless
quantities (15.26) and to introduce the dimensionless
average collective frequency

(15.39)

Then Eq. (15.34) takes the form

(15.40)

The average energy (15.35) becomes

(15.41)

And the order parameter (15.37) is

(15.42)

Taking into account the smallness of the detuning (15.28),
one can simplify the above expressions.

Looking for a positive solution of Eq. (15.40), one
can notice that there is the critical value

(15.43)

at which the average collective frequency (15.39) has a
jump, so that

(15.44)

for 0 ≤ b ≤ bc , but

(15.45)

The frequency (15.44) changes from

to the critical frequency

with the jump at b = bc being

A sudden decrease in the frequency implies an abrupt
increase in the oscillation period. The order parameter
(15.42) varies from η = 1 at b = 0 to the critical value

ε Ω
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1
2
--- δ b bc=( ),+=

becoming zero for b > bc. The average energy (15.41),
above bc, does not depend on the value of b,

Thus, the pumping capacity (15.36), order parameter
(15.37), and detuning susceptibility (15.38) all are zero
above bc,

(15.46)

The behavior of these characteristics in the asymptotic
vicinity of the critical line (15.43), below the critical
pumping bc, is as follows. With the notation

the pumping capacity is

(15.47)

the order parameter becomes

(15.48)

and the detuning susceptibility takes the form

(15.49)

This shows that the pumping capacity and detuning
susceptibility diverge as τ  0. Hence, Eq. (15.43)
really defines a critical line where critical phenomena
occur. The critical indices for all characteristics are 1/2,
satisfying the scaling relation

(15.50)

known for critical phenomena [403]; here ind is the
abbreviation for index. The critical line (15.43) coin-
cides with the bifurcation line (15.29).

15.3. Spatio-Temporal Evolution of Density

In the two-level picture of Section 15.1 the coherent
field (15.8) is

(15.51)

To study the spatio-temporal properties of an atomic
cloud, it is convenient to average the density of atoms
N|ϕ(r, t)|2 over the period 2π/ωj of fast oscillations,
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treating c0 and cj as slow functions of time. The result
is the envelope density

(15.52)

in which

The density (15.52) is normalized to the number of
atoms,

For a cylindrical trap, one may pass to the dimen-
sionless notation of Section 9.4 and define the dimen-
sionless densities

(15.53)

depending on the dimensionless space variables (9.24).
The introduced dimensionless density is normalized as

and is given by the sum

(15.54)

in which

(15.55)

with ψ0 and ψj being the dimensionless coherent
modes.

In the optimized approximation of Chapter 10, the
ground state mode can be written as

(15.56)

where the control functions u = u000 and v  = v 000, in the
strong-coupling limit, are

The ground-state energy is

(15.57)

where the indices mean n = 0, m = 0, k = 0, and again
the strong-coupling condition νg @ 1 is assumed.
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E000
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4 2π3( )1/5
---------------------- 0.547538 νg( )2/5,= =

The radial dipole mode, with the quantum numbers
n = 1, m = k = 0, is presented by

(15.58)

where u = u100 and v  = v 100 are

The corresponding energy writes

(15.59)

Therefore, the transition frequency is

(15.60)

Here and in what follows the strong-coupling limit
νg @ 1 is again supposed.

The vortex mode, with the quantum numbers n = 0,
m = 1, k = 0, is of the form

(15.61)

where u = u010, v  = v 010 are

The transition frequency from the ground to the vortex
state is

(15.62)

The axial dipole mode, with the quantum numbers
n = 0, m = 0, k = 1 reads

(15.63)

where u = u001, v  = v 001 are

The related energy is

(15.64)
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----------------------.= =
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5
8
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ω100 E100 E000–≡ 0.096410 νg( )2/5.=
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v
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reiϕ 1
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Hence, for the transition frequency, one has

(15.65)

The spatio-temporal behavior of the densities
(15.55) for low-lying modes is illustrated in Figs. 38 to
40. The corresponding wave functions are taken from
Eqs. (15.56), (15.58), (15.61), and (15.63). The frac-

ω001 E001 E000–≡ 0.060405 νg( )2/5.=

tional populations (15.15) are calculated by solving
Eqs. (15.16).

15.4. Resonance Formation of Vortices

To form a vortex, the resonance field (15.3) must
depend on the radial angle, so that the corresponding
transition amplitude (15.12) be nonzero. For the latter,
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Fig. 38. Excitation of the radial dipole mode with the quantum numbers n = 1, m = 0, k = 0 with the parameters g = 100, ν = 10,
b = 0.4, δ = 0.01. The ground-state density ρ0 (solid line) and the density ρ100 (dashed line) as functions of the radial variable r at

the point z = 0 for different times measured in units of α–1: (a) t = 0; (b) t = 2; (c) t = 4.

Fig. 39. Excitation of the vortex mode with n = 0, m = 1, k = 0 with the same parameters as in Fig. 38. The ground-state density ρ0
(solid line) and the density ρ010 (dashed line) as functions of the radial variable r at the point z = 0 for different times: (a) t = 2;
(b) t = 4.
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employing the dimensionless cylindrical variables, one
has

(15.66)

In the case of a pure vortex, with n = k = 0 and m ≠ 0,
using for the ground state the function (15.56) and for
the vortex mode

(15.67)

with the control functions um ≡ u0m0 and vm ≡ v 0m0, one
finds

(15.68)

βnmk
1
"
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∞–
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∫=
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π
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π"
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1/2 v 0v m( )1/4
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-----------------------------=

× r r ϕV r ϕ,( )r m 1
2
--- u0 um+( )r2– imϕ+

 
 
 

;expd

0

2π

∫d

0

∞

∫

the resonant field being assumed to depend only on r
and ϕ. Taking this field in the form

(15.69)

which corresponds to the rotating potential (15.3) with
V1(r) ~ cosm'ϕ and V2(r) ~ sinm'ϕ, one obtains

(15.70)

where

For some particular cases, when m' = 1 and p = 0, 1, 2,
we get

V r ϕ,( ) κ
p!
-----"ωrr

p im'ϕ–( ),exp=

β0m0 δmm'

κωr
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2
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Fig. 40. Excitation of the axial dipole mode, with n = 0, m = 0, k = 1 with the same parameters as in Fig. 38. The ground-state density
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Expression (15.70) shows that the modulating
field (15.69) will excite vortices with the winding num-
bers m.

15.5. Problems in Resonance Excitation

In deriving the evolution equations (15.16) for an
effective two-level system, an essential assumption was
made that the coefficients cn are slow functions of time,
so that the inequality (15.9) holds true. The transition
amplitude (15.20) of the resonant field can always be
taken so that β < α. Then Eqs. (15.15) show that the
time variation dcn/dt is of order α. Hence, it should be
that |α| ! Ej . From the definition (15.13) it follows that

(15.71)

where the index j implies the triplet of quantum num-
bers n, m, k. Calculations show that for gν @ 1 the value
of α can become of order Ej . This means that the two-
level picture can be a rather rough approximation for
gν @ 1, and one would expect the ground state to be
coupled to more than one excited mode. Such a situa-
tion is analogous to the effect of power broadening in
optics [296]. In order for the two-level picture to be a
good approximation, one should choose gν not too
large. The atom–atom coupling parameter g, defined in
Eq. (9.27), is proportional to the number of atoms N. If
the number of atoms in the coherent state is large,
N @ 1, then it may be that g @ 1. Hence, to reduce the
value of the product gν, one has to take small ν, making
gν ~ 1. Small ν implies that the trap should have the
shape of a long cylinder.

In order to check directly that the two-level picture
is a reasonable first approximation, it is necessary to
solve numerically the time-dependent equation (15.1).
The latter, in the dimensionless units of Section 9.4,
acquires the form

(15.72)

where ψ = ψ(r, t); time is measured in units of ;
r = {r, ϕ, z}, with the dimensionless cylindrical vari-
ables r ∈  [0, ∞), ϕ ∈  [0, 2π], and z ∈  (–∞, +∞). The
Hamiltonian reads

(15.73)

where

α 2gωr r r ϕ z ψ0 r ϕ z, ,( ) 2d

∞–

+∞

∫d

0

2π

∫d

0

∞

∫=

× 2 ψ j r ϕ z, ,( ) 2 ψ0 r ϕ z, ,( ) 2–( ),

i
∂ψ
∂t
------- Ĥ V̂ res+( )ψ,=

ωr
1–

Ĥ
1
2
--- ∇ 2–

1
2
--- r2 ν2z2+( ) g ψ 2,+ +=

∇ 2 ∂2

∂r2
-------

1
r
--- ∂

∂r
----- 1

r2
---- ∂2

∂ϕ2
--------- ∂2

∂z2
-------.+ + +=

The resonant field , measured in units of "ωr ,
can be taken in one of the following forms, depending
on the type of a topological mode one would wish to
excite: Thus, the modulating field

(15.74)

is needed for exciting the radial dipole mode. The field

(15.75)

with p = 0, 1, 2, …, is sufficient for exciting vortices
with the winding number m. And the resonance field

(15.76)

will excite the axial dipole mode. Choosing the appro-
priate modulating field, one can create the related topo-
logical mode.

As initial condition to Eq. (15.72), one has to take
the ground-state mode that can be approximately pre-
sented as

(15.77)

Here, the control functions u and v  are defined by
Eqs. (10.52), which, for the ground-state case, reduce
to

with the variable s = 2νg/(2π)3/2.
The resonance effect in the two-level picture can be

noticed as follows. One may observe the spatio-tempo-
ral behavior of the dimensionless density

(15.78)

studying the radial and axial cross sections, n(r, 0, 0, t)
and n(0, 0, z, t). The appearance of excited topological
modes, with the spatial shape qualitatively different from
the ground-state mode (15.77), should be noticed in the
corresponding cross sections of the density (15.78).

The formation of a vortex can also be noticed by
studying the angular orbital momentum

(15.79)

If there are no vortices, Lz = 0, while when there appears
a vortex with the winding number m, then Lz = m.
Because of the oscillatory character of the problem, the
orbital momentum will also oscillate since Lz = Lz(t) is
a function of time. One may consider the temporal
behavior of Lz(t). If in some moments of time the latter
reaches an integer value m, this would mean that there
occurs the formation of a vortex with the winding num-
ber m.

V̂ res

V̂ res κr ωtcos=

V̂ res
κrp

p!
-------- mϕ( ) ωt mϕ( ) ωtsinsin+coscos[ ] ,=

V̂ res κz ωtcos=

ψ r t,( ) u2v

π3
--------- 

 
1/4 1

2
--- ur2 v z2+( )–

 
 
 

.exp=
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u2
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  s
ν
--- v+ 0, 1 ν2
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------– 

  s

ν v
-----------+ 0,= =
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∂
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The problem of numerical solution can be simplified
in three particular cases. The first case is when one is
interested in exciting the radial dipole mode in a long
cylindrical trap, for which ν ! 1. Then one can limit
oneself to the consideration of the wave function
behavior at the center z = 0, assuming that at this center,
the wave function practically does not depend on z and
ϕ. This permits one to neglect the derivatives over z and
ϕ in Eq. (15.72), which yields

where ψ = ψ(r, t) ≡ ψ(r, 0, 0, t) and the radial nonlinear
Hamiltonian is

To excite the radial dipole mode, one has to use the
modulating field (15.74).
Another case of simplifying the computational problem
is when one investigates the excitation of a vortex mode
in a long cylindrical trap, so that again ν ! 1. Then con-
sidering, as previously, the problem at the center z = 0,
one may assume that the wave function slowly changes.
The latter allows one to omit the derivative over z,
which simplifies Eq. (15.72) to

with the function ψ = ψ(r, ϕ, t) ≡ ψ(r, ϕ, 0, t) and the
transverse Hamiltonian

in which

For the excitation of the vortex mode, one should take
the resonant field (15.75).

Finally, one may consider the excitation of the axial
dipole mode in a disk-shaped trap, with ν @ 1. It is then
admissible to analyze the situation at the axis r = 0,
assuming the slow dependence of the wave function on
r and ϕ. This changes Eq. (15.72) to

with ψ = ψ(z, t) ≡ ψ(0, 0, z, t) and the axial Hamiltonian

The axial dipole mode is to be excited by the modulat-
ing resonant field (15.76).

i
∂ψ
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i
∂ψ
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------- Ĥz V̂ res+( )ψ,=

Ĥz
1
2
--- ∂2

∂z2
-------–

1
2
---ν2z2 g ψ 2.+ +=

In all these simplified cases, as well as for the gen-
eral equation (15.72), one has to set boundary condi-
tions in addition to the considered initial conditions.
These boundary conditions are rather obvious, and for
the general wave function ψ(r, ϕ, z, t) they write

(15.80)

Numerical investigation of the equations discussed
in this section is yet in process. However, the validity of
the two-level picture has been proved by direct numer-
ical calculations for several similar problems [140, 379,
380, 398, 404], where the nonlinear Rabi-type oscilla-
tions between the ground-state and an excited mode
have been clearly observed.

Another interesting problem would be to study the
possibility and peculiarity of the resonance formation
of coherent topological modes in Bose–Einstein con-
densates with attractive interactions. Such condensates
exhibit oscillatory collective collapse [111]. Being sub-
ject to a resonant modulating field, the condensate
should also show the nonlinear Rabi oscillations. These
two kinds of oscillations should interfere resulting in a
rather intricate behavior. It could, probably, be possible
to regulate the oscillating collapse by means of a reso-
nant field.

CHAPTER 16.
COHERENCE AND ATOM LASERS

The possibility of realizing Bose–Einstein conden-
sation in trapped dilute gases demonstrates, that a mac-
roscopic number of bosons can be produced in a single
quantum state of trapped atoms. The occupation of a
single quantum state by a large number of bosons is the
matter-wave analog of the storage of photons in a single
mode of a laser cavity. A device that could emit coher-
ent beams of Bose atoms, similarly to the emission of
photon rays by light lasers, can be called atom laser
[196–203]. Briefly speaking, an atom laser can be
defined as a device emitting highly-directional beams
of coherent atoms. Therefore, there are two principal
questions related to the realization of atom lasers:
whether the stored bosons are prepared in a coherent
state and how to form a well-collimated beam of atoms
in any desired direction.

16.1. Interference and Josephson Effect

As shown in Chapter 8, Bose–Einstein condensation
in dilute gases of trapped atoms can be understood as
the macroscopic occupation of the ground-state coher-
ent mode. An important consequence of coherence is
the occurrence of interference phenomena. These have
been observed in a nice experiment [195], which con-
firms that Bose–Einstein condensed trapped atoms are
in a coherent state. In this experiment, a laser beam was
used to cut a cigar-shaped atomic cloud into two spa-

ψ r ϕ z t, , ,( )
r ∞→
lim 0, ψ r ϕ z t, , ,( )

z ∞±→
lim 0,= =

ψ r ϕ 2π z t, ,+,( ) ψ r ϕ z t, , ,( ).=
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tially separated parts. After switching off the confining
potential and the laser, the two independent atomic
clouds fall down because of gravity, expand because of
atomic repulsion, and eventually overlap. Clean inter-
ference patterns have been observed in the overlapping
region.

The appearance of interference patterns can be eas-
ily explained as follows. Imagine that a cloud of atoms
is separated into two parts whose locations are centered
at l1 and l2. Being released from the trap, these parts
move with the corresponding velocities V1 and V2.
Then the field operator can be presented as

(16.1)

where ψ1 and ψ2 are the field operators of the separated
immovable parts, and "kj ≡ m0Vj .

The interference pattern can be described by the
function

(16.2)

in which

(16.3)

From Eqs. (16.1) and (16.2) it follows that

(16.4)

where k12 ≡ k1 – k2 and

(16.5)

The initial separation of the cloud parts is assumed to
be much larger than the mean interatomic distance,

(16.6)

If atoms are not in a coherent state, so that the coher-
ence length is small, rcoh ≤ a, then the correlation func-
tion (16.5) is practically zero, together with the inter-
ference function (16.4). Hence, no interference can be
observed. When there exists local coherence, so that
rcoh @ a, then the correlation function (16.5) does not
decay so fast, and the observation of interference
becomes possible. If almost the whole system was ini-
tially in a coherent state, so that rcoh ~ L > l12, then the
correlation function (16.5) takes the form

(16.7)

in which "ω12 ≡ E1 – E2, with Ej being the energy of the
coherent mode related to a j-part, and

(16.8)

where ϕj is a coherent mode located at lj . If atoms are
in the ground state, then the modes ϕj are real. Conse-

ψ r t,( ) ψ1 r t,( )e
ik1 r⋅

ψ2 r t,( )e
ik2 r⋅

,+=

I r t,( ) ρ r t,( ) ρ1 r t,( )– ρ2 r t,( ),–≡

ρ r t,( ) ψ† r t,( )ψ r t,( )〈 〉 ,≡

ρ j r t,( ) ψ j
† r t,( )ψ j r t,( )〈 〉 .≡

I r t,( ) 2 Re ρ12 r t,( )e
k12– r⋅

,=

ρ12 r t,( ) ψ1
† r t,( )ψ2 r t,( )〈 〉 .≡

l12 @ a, l12 l1 l2– .≡

ρ12 r t,( ) ρ12 r( )e
iω12t

,=

ρ12 r( ) Nϕ1* r( )ϕ2 r( ),≡

quently, ρ12(r) is also real. Therefore, the interference
function (16.4) becomes

(16.9)

and one can observe clean interference patterns. In gen-
eral, these patterns will display collapses and revivals
with the period

(16.10)

But if the energies of both separated parts are the same,
E1 = E2, then ω12 = 0, and the interference pattern is sta-
tionary, with the interference function

(16.11)

The spatial interference can be characterized by the
interference fringe spacing. Considering, say the
x direction, one may define the fringe period ∆x =
2π/k12. With the evident renotation

one obtains the fringe period

(16.12)

in agreement with the experiment [195] and with the
discussion in [405].

It is worth emphasizing that coherence is the neces-
sary and sufficient condition for interference. And this
requires no breaking of gauge symmetry, so that one
can set 〈ψ〉 = 0, as is elucidated in Chapter 8. The
assumption of broken gauge symmetry is only a suffi-
cient condition for interpreting interference, but it is not
a necessary condition. Therefore it is not correct to
state, as many do, that the observation of interference
proves the existence of broken gauge symmetry. Such a
statement is wrong, since one presupposes what is
alleged to be proved.

Another manifestation of coherence in trapped con-
densates could be the possible occurrence of Joseph-
son-type effects, in analogy with the known properties
of Josephson junctions in superconductors and super-
fluids. To work out the physical idea, we consider again
two separated condensates confined in a double-well
trap which erects a barrier between them. Then the field
operator can be written as

(16.13)

similarly to Eq. (16.1), but with kj = 0, if the condensate
on average does not moves. The physical meaning of
the Josephson effect is the manifestation of interference
in the atomic current, equivalently to the manifestation
of interference in the atomic density, which is described

I r t,( ) 2ρ12 r( ) k12 r ω12t–⋅( ),cos=

∆t
2π
ω12
--------.=

I r t,( ) 2ρ12 r( ) k12 r⋅( ).cos=

"k12 m0V12, V12

l12

t
-----,= =

∆x 2π "t
m0l12
------------,=

ψ r t,( ) ψ1 r t,( ) ψ2 r t,( ),+=
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by the interference density function (16.2). Thus, the
interference current is defined as

(16.14)

where

(16.15)

With the split operator (16.13), the current (16.14) is

(16.16)

where

(16.17)

The following argumentation is the same as when
considering the density interference. One assumes that
the potential wells, separating the condensate in two
parts, are located sufficiently far from each other, in the
sense of the inequality (16.6). Then, if the system is not
coherent, the correlation function 〈 j12〉  is negligible,
and there is no interference current. However, if the
atomic system is in a coherent state, then the coherent
average gives

(16.18)

with "ω12 ≡ E1 – E2 and

(16.19)

For the ground state, ϕj are real, so is J12(r). Therefore,
the interference current (16.16) becomes

(16.20)

which is the typical Josephson form. This current
depends on time only if ω12 ≠ 0, so that the energies E1
and E2 should be different.

Note that for a coherent state, the average 〈 ji 〉N does
not depend on time, and for the ground state, when ϕi
are real, 〈 ji 〉N = 0. But the interference current has been
defined as in Eq. (16.14) for generality and for closer
analogy with the interference density (16.2).

16.2. Conditions on Atom Laser

Defining an atom laser as a device emitting highly-
directional beams of coherent atoms, one always
assumes [202] that the very first condition on a laser is
that its output is a well-collimated beam that can be
pointed in an arbitrary direction:

(1) Highly-directional beam. This condition
allows one to distinguish a longitudinal direction of
propagation and two transverse directions of diffrac-

J r t,( ) j r t,( )〈 〉 j1 r t,( )〈 〉– j2 r t,( )〈 〉 ,–=

j r t,( ) i"
2m0
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2m0
--------- ψi

†—ψi —ψi
†( )ψi–[ ] .–≡

J r t,( ) 2 Re j12 r t,( )〈 〉 ,=

j12 r t,( ) i"
2m0
--------- ψ1

†—ψ2 —ψ1
†( )ψ2–[ ] .–≡

j12 r t,( )〈 〉 N iJ12 r( )e
iω12t

,–=

J12 r( ) "N
2m0
--------- ϕ1* r( )—ϕ2 r( ) ϕ2 r( )—ϕ1* r( )–[ ] .≡

J r t,( ) 2J12 r( ) ω12t,sin=

tion. Good collimation implies the smallness of the
aspect ratio

(16.21)

in which r(t) is the average transverse radius of a beam
and z(t), its length. The directionality also supposes
that it can be chosen arbitrarily in space.

Characterizing the coherence of a laser, it is useful to
slightly generalize the notions introduced in Section 8.5.
Coherence is intimately related to strong interatomic
correlations. The information about the latter is hidden
in the correlation function

(16.22)

where the density ρ(r, t) is the same as in Eq. (16.3).
The coherence length can be defined as

(16.23)

and the coherence time as

(16.24)

As is seen, the coherence length is, generally, a function
of time, while the coherence time depends on the spa-
tial variable. One may distinguish spatial and temporal
coherence.

(2) Spatial coherence. This requires that for some
period of time,

(16.25)

where a is the mean interatomic distance. It is not com-
pulsory that the inequality (16.25) be valid for all times,
but it is sufficient that it holds true during the time of
beam emission. Thus, for a pulsing laser, this should be
the time of emitting one beam.

(3) Temporal coherence. This is the condition on
the coherence time,

(16.26)

where γ is a spectrum linewidth. Temporal coherence is
related to the condition of monochromaticity,

(16.27)

with "ω being a characteristic atomic energy.
A simple model for an atom laser can be formulated

as follows [203]. Assume that not all atoms of the sys-
tem are in a coherence state, but only Ncoh of them, so
that the coherent field η is normalized as

(16.28)

r t( )
z t( )
---------  ! 1,

C r r' t, ,( ) ψ† r t,( )ψ r' 0,( )〈 〉
ρ r 0,( )ρ r' 0,( )

-------------------------------------------,≡

rcoh t( )
r C r 0 t, ,( ) rd∫
C r 0 t, ,( ) rd∫

-------------------------------------,≡

τcoh r( ) C r 0 t, ,( ) t.d

0

∞

∫≡

rcoh t( ) @ a,

τcoh r( ) @ γ 1–
,

γ ! ω,

Ncoh η η,( ).=
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A part of atoms, Ninc , is not coherent, for example
because of fluctuations [406] or because of depolariz-
ing collisions [363]. In order to take into account that
the number of atoms in a trap is not conserved, one
should add to the equation for the coherent field the
terms describing atom loss and gain. This can be done
by adding to the nonlinear Hamiltonian (8.17) the cor-
responding terms

(16.29)

Then the evolution equation (8.16) for the coherent
field transforms to

(16.30)

From here, with the normalization (16.28), it is
straightforward to get the rate equation

(16.31)

The latter is to be complemented by the rate equation
for incoherent atoms, which can be taken in the form

(16.32)

where P is a pumping or generation rate and Γ is a loss
rate.

Analyzing the stationary solutions to the rate equa-
tions (16.31) and (16.32), one finds that two regimes
exist, depending on the value of the generation rate P as
compared to the critical threshold quantity

(16.33)

For low generation rates, the stable stationary solutions
are

(16.34)

hence, there is no stationary generation of coherent
atoms. But as soon as the generation rate P exceeds the
threshold (16.33), the stable stationary solutions
become

(16.35)

Then the steady-state number of atoms in the conden-
sate grows linearly with the pump rate P. This situation
reminds the lasing threshold for generation in photon
lasers.

The model outlined above has not addressed details
of the output coupling, simply assuming the existence

Hgain
i
2
---"γ+N inc, H loss

i
2
---"γ–.–≡ ≡

i"
∂η
∂t
------ "

2

2m0
---------—2

– U+ 
  η=

+ A η 2η i
2
---" γ+N inc γ––( )η .+

d
dt
-----Ncoh γ+N inc γ––( )Ncoh.=

d
dt
-----N inc P γ+N inc Γ+( )N inc,–=

Pc

γ–

γ+
-----Γ .≡

Ncoh* 0, N inc* P
Γ
--- P Pc<( ),= =

Ncoh*
P Pc–

γ–
---------------, N inc*

γ–

γ+
----- P Pc>( ).= =

of a loss mechanism from the lasing mode. But output
coupling obviously constitutes a vital element of an
atom laser. The general idea of realizing output cou-
pling is to transfer atoms, via a radiofrequency or
microwave field, from a trapped state to an untrapped
state. Being transferred to a state that is not confined by
magnetic fields, the atoms would fly out in all direc-
tions, if gravity would not force them to fall down.

Mewes et al. [14] have experimentally demon-
strated precisely such an output coupler for Bose-con-
densed sodium atoms. Using short resonant pulses of
radiofrequency radiation, an arbitrary percentage of the
atomic population could be transferred in a controllable
manner to the output state. Atoms in the output state
simply fall down from the trap under the action of grav-
ity. Bloch et al. [16] have demonstrated a continuous
output coupler for magnetically trapped rubidium
atoms. Over a period of up to 100 ms, atoms could be
continuously extracted from condensate by a weak
radiofrequency field inducing spin flips between
trapped and untrapped states. In the untrapped state, the
atoms leak out of the trap, experiencing the action of
gravity. Hagley et al. [17] extracted sodium atoms from
a trapped condensate using stimulated Raman transi-
tions between magnetic sublevels. In the latter experi-
ment [17], contrary to the previous ones [14, 16], opti-
cal Raman pulses drove transitions between trapped
and untrapped magnetic sublevels, giving the output-
coupled fraction of atoms a well-defined momentum
kick from the photon recoil. Because of this, atoms
exited the trap in a well-defined beam whose direction
could be varied via the details of the Raman lasers. This
technique produced a device that could really be called
an atom laser, since the orientation of the laser beam
did not rely on gravity but could be selected [407].

16.3. Nonadiabatic Dynamics of Atoms

The motion of trapped atoms is usually described as
being governed by an effective confining potential.
Such a picture is equivalent to the adiabatic approxima-
tion that is applicable for describing the stationary
motion of atoms. But when atoms escape from a trap,
their motion is, certainly, not stationary and hence, in
general, it is not necessarily adiabatic. The study of
nonadiabatic dynamics of atoms is not only useful
because this gives a more general picture of atomic
motion, but also because in this more general picture
some novel dynamical regimes could be found, sug-
gesting new mechanisms for creating highly-direc-
tional beams from atom lasers.

To derive general equations of atomic motion in a
trap, one should start not with an ad hoc introduced
effective confining potential but with the consideration
of the real forces in the trap. For this purpose, one can
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invoke a quantum-mechanical description based on the
Hamiltonian

(16.36)

for a system of N atoms, in which µ0 is an atomic mag-
netic moment, pi = –i"— is a momentum operator, Si is
a spin operator, Bi is the magnetic field formed by the
trap, g is the gravitational acceleration, and Φij is an
interaction potential. The evolution of this system is
given by the wave function ΨN = ΨN(r1, r2, …, rN, t)
satisfying the Schrödinger equation

Note that ΨN = [ ] is a column in the space of spin

variables. For an operator  from the algebra of
observables, the quantum-mechanical average is given
by the scalar product

The temporal behavior of this average follows from the
Schrödinger equation giving

(16.37)

In particular cases, this yields the so-called Ehrenfest
equations, that is the equations for the mean space vari-
able,

(16.38)

and for the mean momentum of one atom,

(16.39)

where α = x, y, z and

(16.40)

For the mean spin, one gets

(16.41)

It is convenient to introduce the notation

(16.42)

To render the system of equations closed, one employs
the semiclassical approximation

(16.43)

ĤN  = 
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2
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d
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d
dt
----- pi

α〈 〉 µ 0 Si

∂Bi

∂ri
α--------⋅ µ0g

α
f

α
,+ +=

f —iΦij〈 〉 .
j ≠i( )

N

∑–≡

d
dt
----- Si〈 〉

µ0

"
----- Si Bi×〈 〉 .=
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Si
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β
,

∂Bi

∂ri
α-------- ∂B

∂r
α--------.= =

Then Eqs. (16.38) and (16.39) yield

(16.44)

and Eq. (16.41) results in

(16.45)

The system of Eqs. (16.44) and (16.45) is basic for con-
sidering the dynamics of atoms in nonuniform mag-
netic fields [408].

The total magnetic field of the trap can be taken as
the sum

(16.46)

in which the first term is the quadrupole field

(16.47)

typical of magnetic traps, where λ is an anisotropy
parameter. If the quadrupole field is formed by one pair
of magnetic coils, then one has — · B1 = 0, which gives
λ = –2. However, in general, the anisotropy parameter
λ can be varied. The second term

(16.48)

where hα = hα(t) and

is a transverse field often employed in magnetic traps to
stabilize the motion of atoms.

In what follows, it is convenient to switch to the
dimensionless space variable r = {x, y, z} measured in
units of the characteristic length

(16.49)

To return to the dimensional Cartesian vector, one has
to make the substitution

Let us define the characteristic frequencies ω1 and ω2
by the equalities

(16.50)

and introduce an effective frequency

(16.51)

where h = {hx , hy , 0}. Also, the notation

(16.52)
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will be used, with γ being a collision rate.
The force (16.40) caused by pair interactions can be

modelled by a random force due to pair collisions. Then
x in Eq. (16.52) is treated as a random variable defined
by the stochastic averages

(16.53)

where Dα is a diffusion rate.
In this way, Eq. (16.44) transforms to the stochastic

differential equation

(16.54)

and Eq. (16.45) is written in the form

(16.55)

where  = [Aαβ] is an antisymmetric matrix with the
elements

If one invokes for Eqs. (16.54) and (16.55) the adi-
abatic approximation, one finds an effective confining
potential being harmonic near the trap center. In fact,
the adiabatic approximation here assumes that the spin
adiabatically follows the magnetic field, which implies

that dS/dt = 0. The latter leads to the equality  = 0
or B × S = 0. Consequently, S is aligned along B, so that
one can put S = (S(0) · B)B/B2. Substituting this in
Eq. (16.54), one finds that the motion is approximately

harmonic around the trap center. But recall that the adi-
abatic approximation has sense only for describing a
stationary regime, when atoms are permanently
trapped. And such an approximation is, in general,
invalid for treating nonstationary regimes, e.g., when
atoms fly out of the trap.

16.4. Scale Separation Approach

The evolution equations (16.54) and (16.55) can be
treated by employing the Scale Separation Approach
[409–412], which is a generalization of the averaging
method [399] to the system of stochastic equations. To
this end, it is necessary, first, to classify the functional
variables onto fast and slow. The latter can be done by
assuming the existence of the following small parame-
ters

(16.56)

Then from Eqs. (16.54) and (16.55) it follows that r and
h can be treated as slow, while S as fast. This permits
one to solve Eq. (16.55) for the fast function, keeping
the slow functions r and h as quasi-invariants, that is,

the matrix  can also be kept as a quasi-invariant.

For the matrix , one can solve the eigenproblem

obtaining the eigenvalues

and the eigenvectors

The latter possess the properties

and they form an orthonormalized basis,

With the matrix  treated as a quasi-invariant, the solu-
tion to Eq. (16.55) reads

(16.57)

where the coefficients

are defined by initial conditions.

The solution (16.57) is to be substituted in the right-
hand side of Eq. (16.54) for the slow variable, averag-
ing this right-hand side over time and over the stochas-
tic variable. In the process of the averaging, the func-
tions r and h should be distinguished between each
other due to the inequality

(16.58)

that usually holds true. Then r is to be considered as
slow, compared to the fast function h. Thus, the double
averaging procedure for a function f(r, h, x, t) is
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defined as

(16.59)

where the slow variable r is kept fixed. Accomplishing
this procedure leads to the equation

(16.60)

with the effective force

(16.61)

in which

where  ≡ hα(0) and  ≡ Sα(0).

As an example of the transverse field (16.48) let us
take the rotating field, used in some traps [85], when

(16.62)

Then the effective force (16.61) becomes

(16.63)

If initial conditions for the spin polarization are chosen

so that  ≠ 0 and  =  = 0, then the force (16.63)

at |r | ! 1 reduces to the harmonic form. For  < 0,
atoms are confined in the trap, oscillating in an effective
harmonic potential. The presence of gravity does not
change much this motion, simply shifting the equilib-
rium position from the trap center. This picture
describes the standard motion of trapped atoms.

Suppose that, after atoms have been trapped, their
spin polarization is prepared in the initial state

(16.64)

This can be done, for instance, by means of a short
pulse of magnetic field. In quantum mechanics such a
process is termed sudden perturbation [413, 414]. If the
spin of trapped atoms was aligned along B2, then the
duration of a magnetic pulse, turning spins to the polar-

ization (16.64), has to be shorter than , and its
amplitude larger than B2. The initial spin polarization
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(16.64) is such that the spins are not aligned along the
magnetic field B. Therefore, Eq. (16.64) corresponds to
nonadiabatic initial conditions. Consequently, the fol-
lowing dynamics will also be nonadiabatic, and atoms
will not be necessarily confined, but will escape from
the trap. The finite size of the latter can be taken into
account by introducing the trap shape factor

(16.65)

where the trap is assumed to have the shape of a cylin-
der of radius R and length L, with Θ(·) being a unit step
function. Since the magnetic fields of the trap are sup-
posed to act on atoms only inside the trap, the
force (16.63), caused by these magnetic fields, should be
nonzero only inside the trap. This is easy to take into
account by multiplying (16.63) by the shape factor (16.65).
Thus, the effective force of the trap magnetic fields,
under the initial spin polarization (16.64), acquires the
form

(16.66)

in which u = u(r),

(16.67)

The evolution equation (16.60), with the effective force
(16.66), possesses the property of invariance under the
transformation

λS  –λS, r  –r, G  –G. (16.68)

Therefore, it is sufficient to consider the case of a fixed
sign of λS, say one can fix λS > 0.

For convenience, let us introduce the dimensionless
gravitational force

(16.69)

and let us pass to the dimensionless time measured in

units of ( ω1)–1. To return to the dimensional time,
one has to make the replacement

Then Eq. (16.60) yields

(16.70)

where the equation for the y-component is not written
down, being of the same form as the equation for the
x component.

Before analyzing Eqs. (16.70), it is useful to give
estimates for the parameters typical of magnetic traps
[6, 85]. The characteristic frequency of atomic motion
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ω1 ~ 102–103 s–1, the frequency of spin motion
ω2 ~ 107–108 s–1. The frequency of the transverse rotat-
ing field ω ~ 104–105 s–1. The collision rate γ ~ 10 s–1.
From here

which shows that the inequalities (16.56) are valid, as
well as the inequality (16.58). The characteristic length
(16.49) is R0 ~ 0.1–0.5 cm. For S ~ 1 and the gravita-
tional acceleration g ~ 103 cm/s2, by choosing appropri-
ate λ and ω1, one can always make the dimensionless
gravitational force (16.69) small, so that |δα | ! 1. Thus,
for the typical values λ ~ 2, S ~ 1, R0 ~ 0.5 cm and ω1 ~
102–103 s–1, one has δα ~ 10–3–10–1.

16.5. Magnetic Semiconfinement of Atoms

The evolution equations (16.70) possess solutions
displaying an interesting regime of semiconfined
motion, when atoms are confined from one side of the
axis z but are not confined from another side [408,
415−419]. This semiconfinement is realized by means
of only magnetic fields, without involving additional
laser beams kicking atoms out and without mechanical
collimators. The existence of such a magnetic semicon-
finement can be demonstrated both analytically and
numerically.

First, let us demonstrate the occurrence of semicon-
finement analytically. Since |δα | ! 1, the presence of
gravity does not drastically shift the center of the
atomic cloud from the trap center. So that for atoms in
the middle of the trap one can put |r | ! 1. Then the
function (16.67) reduces to

(16.71)

Using this, the second of Eqs. (16.70) can be trans-
formed to the form

(16.72)

where z0 = z(0) and  = (0) are initial conditions for
the location and velocity in the z-direction, respec-
tively. With the notation

(16.73)

in which t0 is an integration constant defined by the ini-
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the form (16.72) reduces to the Weierstrass equation

(16.74)

with the invariants

The solution to Eq. (16.74) is called the elliptic Weier-
strass function [420]. To analyze possible regimes of
motion, it is useful to introduce the characteristic roots
ei (i = 1, 2, 3) defined by the equation

(16.75)

whose solutions are

(16.76)

Then Eq. (16.74) can be written as

(16.77)

The properties of the characteristic roots (16.76)

depend on the sign of the determinant /27 – .
There are three different cases:

When  < 27 , the roots e1 and e2 are complex
conjugate, while e3 is real. The right-hand side of
Eq. (16.77) can be presented as 4|3 – e1|2(3 – e3). As
far as the left-hand side of Eq. (16.77) is nonnegative, it
follows that 3 ≥ e3 or, according to the relation (16.73),
one gets z ≥ 6e3/λ2.

If  = 27 , then all three characteristic roots are
real and are

Again, admissible solutions are to be such that the
right-hand side of Eq. (16.77) be nonnegative. This
gives, as in the previous case, 3 ≥ e3, hence z ≥ 6e3/λ2.
Thus, in both cases considered, one has z ≥ zmin, with

(16.78)

That is, the motion along the z-axis is confined from
below by the minimal value (16.78), but it is not con-
fined from above. This means nothing but semiconfined
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motion. Such a type of motion is realized for  ≤

27 , which yields the inequality

The latter would always hold true if there were no grav-
ity or when the trap axis is directed along the gravita-
tional force, that is when δz ≥ 0. However, if δz < 0, this
inequality is valid not for all initial conditions, though
for the majority of them, since |δz | ! 1.

For the case  > 27 , which is possible only for
g2 ≥ 0, hence δz ≤ 0, the characteristic roots (16.76) are
real and can be written as

The roots are arranged so that e1 < e2 ≤ 0 < e3. There are
two admissible kinds of motion. One kind corresponds
to z ≥ zmin, with the same minimal z as in Eq. (16.78),
which is again the semiconfined motion. And the other
type corresponds to a motion confined between e1 and
e2, so that e1 ≤ z ≤ e2. This means that in the whole phase
space of initial conditions, the fraction of atoms that
remain confined is of order e2 – e1, while all other atoms
are semiconfined.

To estimate the fraction of atoms that remain con-
fined, one can take into account that |δα | ! 1, thence
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g2 ! 1, which shows that g3 . 0. From here ϕ . π/2,
and the related characteristic roots are

This results in

which for the typical values of the parameters consid-
ered above gives e2 – e1 ~ 10–2–10–1. Therefore the frac-
tion of atoms that remain confined is less than 10% and
can be made as small as 1%.

The elliptic Weierstrass function, being the solution
of Eq. (16.74), diverges at t  t0, which results in the
divergence of the z-variable (16.73) according to the
law

The characteristic time

(16.79)

can serve as an estimate for the escape time, that is the
time after which an atom, starting at the location z0 at
t = 0, leaves the trap. The estimates for the typical trap
parameters give [408] an escape time of order 0.1 s.

The existence of semiconfinement has been con-
firmed [416, 417, 419] by direct numerical solution of
Eqs. (16.70). Several typical trajectories for the cross
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Fig. 41. Phase portrait for the period of time 0 ≤ t ≤ 50 for atoms starting from the trap center x0 = y0 = z0 = 0 with velocities ,

,  varied in the interval [–0.1, 0.1]. The trap parameters are R = 10, L = 10, and λ = 20. Note that the picture practically does

not change upon independently varying the trap radius and length between 10 and 100. The gravity parameters are δx = 0.01, δy = 0,
δz = –0.01. Shown are: (a) trajectories; (b) velocities.

ẋ0
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section x(t) – z(t) and the related phase portraits for the
velocities (t) and (t) are presented in Figs. 41 to 42,
for the trap axis inclined by the 45 degrees to the hori-
zon. The influence of gravity, as is seen, results in curv-
ing the trajectories, similarly to what happens to can-
non shells. Stronger gravitational force bends the tra-
jectories stronger. But the semiconfining regime
remains.

To consider the role of random collisions, described
by the term γx in Eq. (16.54), one has, after substituting
the fast solution (16.57) into Eq. (16.54), to average the
right-hand side of the latter over time, as in the defini-
tion (16.59), but without averaging over the variable x.
The rotating transverse field (16.62), initial spin polar-
ization (16.64), trap shape factor (16.65), and all nota-
tions are assumed to be as before. Then, instead of
Eqs. (16.70), one obtains

(16.80)

The random variables ξα are characterized by the sto-
chastic averages (16.53), the second of which, for the
dimensionless time used in Eq. (16.80), writes

just because the time here is measured in units of

( ω1)–1.

If the main behavior of the system were governed by
intensive random collisions, then, as is evident, no
ordered semiconfining regime of motion could exist.
The disorganized chaotic motion of atoms is of no

ẋ ż
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interest for the present investigation. What is important
is to find conditions under which random collisions
would not much disturb the semiconfinement of atoms.
Therefore the terms in Eqs. (16.80), which are related
to random collisions, can be treated as weak perturba-
tions. To this end, the solutions to Eqs. (16.80) may be
presented as the sums

(16.81)

in which x1 and z1 are the solutions to Eq. (16.70), while
x2 and z2 are given by the linearized equations. The lat-
ter, for |r | ! 1, when u(r) ≈ 1, are

(16.82)

As earlier, the equation for the y-component is not writ-
ten down, since it has the same form as that for the
x-component. The solutions to Eqs. (16.82) can be pre-
sented as

(16.83)

where
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According to the properties of the random variables ξα,
one has

Calculating the mean-square deviations, one can treat
x1 and z1 as slow variables, keeping them as quasi-
invariants. Then one obtains

These solutions show that the small parameter here is

(16.84)

Under the inequality (16.84), random collisions can be
considered as a weak perturbation not essentially dis-
turbing the semiconfined motion of atoms. Taking, for
estimates, the collision rate as γ ~ "ρas/m0, where ρ is
the density of atoms, and the diffusion rate as D ~
kBT/", where T is temperature, one gets from
Eq. (16.84) the condition

(16.85)

If one takes the parameters typical of experiments with
87Rb and 23Na, that is m0 ~ 10–22 g, as ~ 5 × 10–7 cm,
ω1 ~ 103 s–1, λS ~ 1, and ρ ~ 1012–1014 cm–3, then the
condition (16.85) requires T ! T0 ~ 10–5–10–1 K. Such
temperatures are essentially higher than the Bose-con-
densation temperatures for the corresponding atoms.
Hence, the Bose-condensed trapped atoms can be cou-
pled out of the trap in the regime of semiconfined
motion. This mechanism can be employed for creating
well-collimated beams from atom lasers in arbitrary
direction. Such highly-directional beams can be formed
by means of only magnetic fields. That is why the
described effect has been named the magnetic semicon-
finement of atoms [408, 415–419].
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CHAPTER 17.
BOSE–EINSTEIN CONDENSATE IN LIQUIDS

In the previous chapters, Bose–Einstein condensate
in trapped atomic gases has been considered. Similar
types of condensates can appear in other gases with suf-
ficiently weak interparticle interaction. For example,
Bose–Einstein condensation of excitons in CuCl and
Cu2O has been studied both theoretically and experi-
mentally [421–423]. It has been predicted [288, 289]
that in dense nuclear matter the Bose condensation of
dibaryons can happen [424–426], which suggests the
possibility of creating dibaryon lasers [427].

As has been demonstrated by Bogolubov [282],
Bose–Einstein condensation does generally occur in
weakly nonideal Bose gases. But an important question
is whether the condensation remains in Bose liquids,
that is in the systems of strongly interacting atoms. The
most known and intensively studied such a liquid is
superfluid 4He. Since London [428] and Tisza [429], it
is commonly believed that superfluidity in helium is
somehow connected to Bose condensation, although an
explicit relation between the superfluid and condensate
fraction is yet unknown till nowadays. In this Chapter,
we shall briefly touch some problems in the theoretical
description of strongly interacting systems and will dis-
cuss the most accurate experiments aiming at measur-
ing the condensate fraction in superfluid helium. It is
not our goal to give here a detailed review of these top-
ics which voluminous literature is devoted to, but we
shall sketch only some, to our mind, most interesting
points, paying attention to differences and similarities
in the features of liquids and gases.

17.1. Differences between Liquids and Gases

There are several important differences that are
immediately noticeable when comparing liquids with
gases. For concreteness, liquid 4He at saturated vapor
pressure will be considered in what follows. With the
density ρ = 0.0218 Å–3, the mean interatomic distance
is a = 3.58 Å. The superfluid transition temperature is
Tc = 2.17 K. For this temperature and mass m0 = 6.64 ×
10–24 g, the thermal wavelength is λT = 5.93 Å.

Here, one may notice the first difference, making it
clear that at Tc the ratio a/λT = 0.6 is not much less than
one, so that inequality (7.1) is not valid. Respectively,

 = 4.6. This, however, does not look yet too danger-
ous, since by lowering temperature, one always can
reach the point when λT @ a.

The more warning sign is that inequality (7.2) never
holds true. To make this transparent, one needs to
define the interaction radius. For an interaction poten-
tial Φ(r), with a hard core of radius σ, the interaction

ρλT
3
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radius is defined as

(17.1)

In the case of soft-core potentials, one can put σ  0.
But the interaction for helium atoms is usually
described by hard-core potentials.

The most popular is the Lennard-Jones potential

(17.2)

in which

Here, ε is given in the Kelvin scale. The minimum of
this potential, given by the expression

is located at the point that is smaller than the inter-
atomic distance a. There exist also several other poten-
tials [430]. One of the best representations of the
helium interaction is produced by the Aziz potential
[431–433] having the form

(17.3)

in which

and the dimensionless variable

defines the radius normalized to the point of minimum
rm , so that

The other parameters, according to the last version
[433], are

Calculating the interaction radius (17.1) is more
convenient for the simpler Lennard-Jones potential
(17.2). This gives rint = 2.69σ = 6.88 Å. Comparing it
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with the interatomic distance, one has rint /a = 1.9, from

where  = 7.1. Hence, Eq. (7.2) is not valid, as well
as the second of Eqs. (7.3), since

(17.4)

Therefore, the condensate in a liquid, where Eq. (17.4)
holds true, should be rather depleted, if condensation
can occur at all.

The third peculiarity results from the fact that ine-
quality (17.4) contradicts Eqs. (9.2), because of which
one cannot simplify the consideration resorting to the
cartoon potential (9.3), but one is doomed to operate
with the full potentials like those above.

One more problem immediately arises from the pre-
vious, due to the sad circumstance that the hard-core
potentials, as the Lennard-Jones one, are not integrable,
i.e., they do not satisfy condition (7.30). Because of
this, it is impossible to break gauge symmetry by means
of the Bogolubov prescription, as is discussed in Sec-
tion 7.4. Nontrivial coherent states also do not exist for
nonintegrable potentials, as is explained in Chapter 8.
Thus, atoms cannot be in pure coherent states, but can
be only partially coherent. To cope with the nonintegra-
bility of the interaction potentials, one has to accurately
take into account interatomic correlations, especially
short-range ones. For this purpose, without breaking
gauge symmetry, one employs [434–437] the Jastrow-
type variational functions

(17.5)

in which rij ≡ |ri – rj |; f(·) is a pair correlation function,
and f3(·) is a triplet correlation function. The pair corre-
lation function behaves, at short distance, as

(17.6)

and at large distance, it has the asymptotic behavior

(17.7)

where c is the velocity of sound. Exponentially tending
to zero as r  0, the correlation function (17.6)
smooths the divergence of the interaction potential
making the smoothed potential

(17.8)

integrable. Note that, although the Aziz potential (17.3)
is formally finite at r = 0, its value Φ(0) ~ 106 K is so
large that this potential is also to be considered as a
hard-core potential, necessarily needing to take into
account interatomic correlations smoothing its sharp
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rise at r = 0. The smoothing radius b in Eq. (17.6) can
be treated as a variational parameter or can be deter-
mined from the Schrödinger equation for a pair wave
function [438–440], from where

(17.9)

here the DeBoer parameter

(17.10)

For helium, Λ = 0.426 and b = 1.13σ = 2.89 Å. Corre-
lation functions can also be found by invoking a cumu-
lent-type expansion in the frame of the method of col-
lective variables [441–443]. These functions can be
optimized by solving the Euler-Lagrange equations
[434–436]. The large-distance behavior of the correla-
tion function (17.7) is a consequence of the existence of
long-wavelength phonons [444]. After the smoothed
potential (17.8) is defined, it is possible to develop a
systematic iterative procedure for Green function equa-
tions [291, 355].

The necessity of taking account of strong inter-
atomic correlations at the very first step of any iterative
procedure is dictated by two reasons. One, as is
explained above, is the nonintegrability of the hard-
core interaction potentials, because of which the Fou-
rier transforms of such potentials do not exist. Another
reason is that the application of simple perturbation
theory, without an appropriate account of correlations,
can lead to senseless results. As an example, we may try
to calculate, by using perturbation theory [445], the
density of Bose-condensed atoms at zero temperature,
which yields

where (k) is the Fourier transform of the interaction
potential. As is said above, such a transform does not
exist for nonintegrable potentials. But even assuming a

soft-core potential, one has (0) ≈ kBε/ρ, which for
helium results in ρ0/ρ ≈ –0.16, that is a physically
senseless negative value for the condensate density.

The impossibility of applying simple perturbation
theory to liquids can be easily understood remembering
that for this theory to be applicable requires the small-
ness of the ratio of the mean potential energy to the
mean kinetic energy. However, for liquids, this ratio is
never small, but, on the contrary, it is usually larger than
one. For helium, as follows from theoretical calcula-
tions [443, 446, 447] and experiments [448–451], this
ratio is about two.

b
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17.2. Definition of Superfluid Density

One commonly believes that superfluidity appears
simultaneously with Bose condensation, although the
relation between the superfluid and condensate frac-
tions has never been established for liquids. Thus, at
zero temperature, all volume of helium is superfluid,
while the condensate fraction does not exceed a value
of about 10%, and no general relation between these
fractions is known.

The condensate density is defined as the difference

(17.11)

between the total density ρ and the density of noncon-
densed atoms,

(17.12)

in which n(k) is the momentum distribution.

The superfluid density can be determined by analyz-
ing the response of the fluid to the motion imposed by
boundary conditions [445, 452, 453]. For this purpose,
one needs to study what happens when the system is
subject to an external perturbation, such that the liquid
starts moving uniformly with velocity v. This motion
could be achieved by pushing the liquid through a tube
having a pressure difference at its ends or enclosing the
system between two rotating cylinders of radii much
larger than the distance between cylinder walls.

For a system uniformly moving with velocity v, the
field operator in the laboratory frame, ψv , is connected
with the field operator ψ in the frame, where the system
is immovable, through the Galilean transformation

(17.13)

Then the operators of observables in the laboratory
frame are obtained by taking ψv instead of ψ. For
instance, the Hamiltonian (8.13) becomes

(17.14)

where  ≡ –i"—. The number-of-atoms operator does
not change,

(17.15)

And the momentum operator

transforms to

(17.16)
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Observable quantities from the algebra of observables
! are given by the average

(17.17)

with the statistical operator

(17.18)

where β ≡ (kBT)–1. For the momentum operator (17.16),
one gets

(17.19)

The part of the liquid, which nontrivially responds
to the perturbative motion, defines the superfluid com-
ponent with the density

(17.20)

Here, it is taken into account that, for an initially isotro-
pic system, the density (17.20) should not depend on
the direction of the probing velocity, that is, ρs does not
depend on the index α.

To calculate the superfluid density (17.20), one has
to analyze the limit v  0. In this limit, linearizing the
statistical operator (17.18), one finds

(17.21)

which for the average (17.17) yields

(17.22)

Here, 〈!〉  ≡ Tr ρ! implies an average in the frame at
rest.

For an isotropic system, one has

(17.23)

Because of this, the statistical operator (17.21) sim-
plifies as

(17.24)

and the average (17.22) reduces to

(17.25)

For example,

(17.26)

Using this, for the average (17.19) one obtains

(17.27)

In the case of an isotropic system, one can employ the
equality
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which gives

Finally, the superfluid density (17.20) takes the form

(17.28)

Since one also has the relation

(17.29)

where ρn is the density of the normal component, the
comparison of Eqs. (17.28) and (17.29) yields

(17.30)

This tells that the normal component is related to the
dissipated energy of motion, while the superfluid com-
ponent corresponds to nondissipative motion.

The dissipative term 〈 〉  can be written in several
forms. It can be expressed through the momentum-
momentum correlation function as

(17.31)

where the momentum-density operator is

It can also be connected with the two-particle Green
function

in which  is the time-ordering operator and ψ( j ) ≡
ψ(rj , tj). One has

(17.32)

where the limit means

under the condition t3 > t1 > t4 > t2. Passing to the
momentum representation by means of the Fourier
transform

one gets

(17.33)

To find explicit expressions for the condensate den-
sity (17.11) and the superfluid density (17.28), one
needs to specify the problem. It is straightforward to
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show how to accomplish calculations for the ideal gas
with the Hamiltonian

(17.34)

where ωk is a particle spectrum and µ, the chemical
potential. Then one has

which can be directly checked by differentiating
∂n(k)/∂ωk . Assuming the thermodynamic limit with the
standard replacement

and using condition (17.23), one finds

(17.35)

Hence, the normal density (17.30) becomes

(17.36)

With the ideal-gas Hamiltonian (17.34), the momentum
distribution is

(17.37)

Specifying the spectrum "ωk = "2k2/2m0, one finds the
density (17.12) of noncondensed atoms,

and the density (17.36) of the normal component,

The integrals here are related through the equality
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In this way, one comes to the conclusion that below the
condensation temperature

the density of noncondensed atoms (17.12) and the nor-
mal density (17.30) coincide,

(17.38)

Consequently, the condensate density (17.11) coincides
with the superfluid density (17.29).

Such a coincidence is to be treated rather as an occa-
sion than as a rule, since the general forms of the den-
sities (17.12) and (17.30) are very different. The coin-
cidence in Eq. (17.38) happened because of the partic-
ular case of an ideal gas with a parabolic spectrum. If,
with the same momentum distribution (17.37), the
spectrum ωk is slightly changed, the coincidence of 
and ρn will not occur. As an illustration, one may take
the phonon spectrum ωk = ck. Then the density of non-
condensed particles becomes

(17.39)

The calculation of the normal density reduces to the
integral

where Bn are the Bernoulli numbers. Equation (17.36)
results in

(17.40)

As is seen, expressions (17.39) and (17.40) are neither
coinciding with nor proportional to each other, but they
even have different temperature dependence.

For a nonideal system, both the particle spectrum ωk

and momentum distribution n(k) differ from those of
the ideal gas, as a result of which the condensate den-
sity ρ0 is, in general, very different from the superfluid
density ρs . The momentum distribution for liquid
helium has little in common with that for an ideal gas.
Instead of n(k), one often considers the combination
k2n(k). The latter, for an ideal gas below Tc , has the
maximum 2m0kBT/"2 at k = 0. But for liquid helium, the
function k2n(k) is zero at k = 0 and possesses a maxi-
mum at k ≈ 0.7 Å–1, as follows from theoretical calcula-
tions [434–436, 446, 447] and experiments [454–458].
In this way, there is no general relation between the
condensate and superfluid densities. The coincidence
of these for the ideal gas with a parabolic spectrum is
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rather occasional. Moreover, this coincidence is even
confusing, since the Landau criterion of superfluidity

cannot be satisfied for a parabolic spectrum. Hence, the
ideal gas should not possess the property of superfluid-
ity at all.

17.3. Spectrum of Collective Excitations

The most convenient technique for the theoretical
description of collective excitations in quantum liquids
is the method of Green functions. The spectrum of col-
lective excitations is defined by the poles of the two-
particle Green function or by the poles of the density
response function χ(k, ω). This is equivalent to saying
that the collective spectrum ε(k) is defined by the zeros
of the inverted response function χ–1(k, ω), that is by the
equation

(17.41)

This method of describing collective excitations can
also be employed for nonuniform systems, such as
gases of trapped atoms. Therefore, it is worth mention-
ing here some relevant points of this approach to Bose
systems.

The calculation of the density response function for
strongly interacting Bose liquids, such as helium, is a
very nontrivial task [459]. Actually, there exist no reli-
able theoretical methods of treating strongly interacting
quantum liquids, being based on microscopic theories.
Because of this, the consideration here will be limited
by weakly nonideal systems, for which the so-called
random-phase approximation is valid. This approxima-
tion corresponds to the usage of the Hartree form for
self-energy. To be more accurate, one has to employ the
correlated Hartree approximation [291, 355] taking
account of interatomic correlations, as a result of which
the bare interaction potential is replaced by the
smoothed potential (17.8). This is especially important
for atoms interacting through nonintegrable potentials
for which the Hartree self-energy diverges because of
the divergence of the Fourier transform of the interac-
tion potential, while the Fourier transform

(17.42)

of the smoothed potential (17.8) perfectly exists.
Considering collective excitations for the same sys-

tem, it is very instructive to compare the spectrum
obtained under different assumptions, in order to
understand what would be the difference between the
collective spectra for the cases: (i) when the system is
in a coherent state and when it is incoherent, and
(ii) when gauge symmetry is broken and when it is con-
served. As follows from Chapter 13, collective excita-
tions for a weakly nonideal Bose system in a coherent

ε k( )
k

----------
k

min 0>

χ 1–
k ε k( ),( ) 0.=

Φ̃ k( ) Φ r( )e
ik– r⋅ rd∫=

state possess the same spectrum as that for a system
with broken symmetry [282, 300, 445].

For an incoherent system, with conserved gauge
symmetry, the single-particle spectrum in the corre-
lated Hartree approximation is

(17.43)

Here and in what follows, the system of units is used
where " ≡ 1. Recall that the single-particle spectrum is
given by the poles of the single-particle Green function.
These poles, when gauge symmetry is conserved, are
different from those of the two-particle Green function,
giving the spectrum of collective excitations. This is
contrary to the case of broken gauge symmetry when
the single-particle and collective spectra coincide [282,
445]. The single-particle Green function for a Bose sys-
tem with conserved gauge symmetry has the form

in which the single-particle spectrum ω(k) is defined in
Eq. (17.43), for the approximation considered, and

is the momentum distribution. In this case, the density
response function becomes

(17.44)

with the polarization function

(17.45)

The equation (17.41) for the spectrum of collective
excitations can be written as

(17.46)

The polarization function (17.45) can be simplified
noticing that the momentum distribution n(k) quickly
diminishes as k increases. Then one can put k' = 0 in the
denominator of Eq. (17.45), which yields

(17.47)

Substituting this in Eq. (17.46) results in the Bogolubov
spectrum

(17.48)
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in which

(17.49)

If one assumes here the delta-potential, as in Eq. (9.3),
one gets the same Bogolubov spectrum (13.8) as for a
coherent system. The same collective spectrum (17.48)
follows for a system with broken gauge symmetry
[282, 300, 445].

The approach, based on density response functions,
can also be applied to a mixture of Bose liquids defined
by the Hamiltonian (14.1). It is straightforward to dem-
onstrate [395] that the spectrum of collective excita-
tions branches, and, for a mixture with conserved gauge
symmetry, acquires the same form (14.27) as for a
coherent mixture of Section 14.2 or for a mixture with
broken gauge symmetry [393]. The condition of
dynamical stability for a binary mixture is

(17.50)

For the case of the delta-potentials (14.11), one has to

replace (k) by Aij, which reduces the inequality (17.50)
to condition (14.34).

Moreover, considering the mixture with relative
motion of components, it is possible to show that the
spectra of collective excitations and, respectively, the
conditions of dynamic stability are the same for a
coherent mixture discussed in Section 14.4, for a mix-
ture with broken gauge symmetry [393], as well as for
a normal mixture with conserved gauge symmetry
[395]. Thus, the spectrum of collective excitations does
not depend on whether the system is coherent or nor-
mal, whether gauge symmetry is broken or conserved.

For superfluid 4He, the first spectrum of collective
excitations was proposed by Landau [460, 461] in the
course of analyzing thermodynamic properties. Feyn-
man [462] suggested a microscopic basis for the Lan-
dau’s phenomenological dispersion curve, connecting

c k( ) ρ
m0
------Φ̃ k( ).≡

Φ̃11 0( )Φ̃22 0( ) Φ̃12
2

0( ).>

Φ̃ij

the excitations spectrum with the static structure factor
S(k), which resulted in the spectrum

Neither Landau nor Feynman mentioned the broken
gauge symmetry. Bogolubov [282, 463], deriving the
excitation spectrum, introduced gauge symmetry
breaking. But, as is demonstrated above, the same
Bogolubov spectrum can be derived without breaking
gauge symmetry. All of them, Landau, Feynman and
Bogolubov, considered the phonon–roton curve of
excitations in helium as a unified branch, so that it is
impossible to speak strictly of phonons and rotons as of
different types of elementary excitations. But it is more
correct to speak of the phonon and roton parts of the
same unique spectrum. Note that the Bogolubov spec-
trum (17.48) can reproduce the phonon–roton spectrum
of liquid helium for an appropriate interaction potential
defining the effective sound velocity (17.49). This spec-
trum is reproduced under simple conditions on the Fou-

rier transform (k):

where kr corresponds to the point of roton minimum.
Such conditions are easy to achieve even for rather sim-
ple potentials [464].

The difficulty of calculating the spectrum of collec-
tive excitations for the realistic strongly interacting
liquids, such as helium, prompted some authors to con-
struct phenomenological or semiphenomenological
models. We shall not give here a complete survey of
these models but will mention only one of them, which
recently provoked a vivid discussion. This is the model
advanced by Glyde and Griffin [465–468]. The basic
assumption of this model is that there are in superfluid
4He two principally different branches of excitations:
one is the phonon branch due to density excitations at
low wave vectors, and another part is the quadratic sin-
gle-particle branch at higher wave vectors. These two
branches exist independently of each other, so that they
remain above as well as below the temperature of
superfluid transition Tλ . But below Tλ , these branches
become coupled via the appeared Bose condensate
accompanied by broken gauge symmetry. However, the
existence of two separate branches apparently contra-
dicts the unified picture of Landau, Feynman, and
Bogolubov. By exact microscopic consideration,
Nepomnyashchy [469] showed that model propagators,
employed in the discussed model [465–468], are not
consistent with the general structure of Green function
equations, while the latter support the unified nature of
the phonon–roton spectrum. The temperature depen-
dence of the excitation spectrum was studied experi-
mentally [470, 471]. These experiments demonstrated
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k

2
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k
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Fig. 43. Spectrum of collective excitations in superfluid 4He
at saturated-vapor pressure and low temperature. The
energy ε(k) is measured in K and the wave vector k in Å–1.
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that there is no indication of a well-defined single-par-
ticle branch, becoming the roton mode, that would sud-
denly appear as one goes below Tλ . Contrary to this, the
superfluid transition is marked by a complete softening
of the roton mode and its rapid attenuation, when one
approaches Tλ from below. Above Tλ , the roton mode
continues to an overdamped diffusive mode of zero fre-
quency. In this way, experiments [470, 471], as is con-
cluded by their authors, imply “a qualitative disagree-
ment with the interpretation proposed by Glyde and
Griffin.”

Thus, the phonon–roton spectrum of superfluid
helium must be considered as a unified branch. The
question remains whether there could exist some rem-
nants of low-frequency quasiparticle excitations in
addition to the phonon–roton branch, with the energies
below the broad multiphonon component. There have
been some theoretical arguments [395, 472–475] con-
cerning the possible existence of an additional quasi-
particle excitation branch. In a series of papers
[476−480], the authors find experimental indications
that an excitation branch, additional to the phonon–
roton spectrum, could exist. However, the latter exper-
iments have not yet been confirmed by other groups. It
is worth emphasizing that, even if some additional exci-
tation branch does exist, one has, first of all, to under-
stand its physical origin and, second, no interpretation
should contradict the fact that the phonon–roton curve
is a unified branch [469–471].

The phonon–roton spectrum of superfluid 4He has
been carefully studied in many experiments (see review
[481]). Its commonly accepted form, at saturated-vapor
pressure and low temperature T ≤ 1.2 K, is presented in
Fig. 43. In the long-wave limit, one has the phonon
spectrum

In the vicinity of the roton minimum, the dispersion
curve is

with ∆r = 8.6 K, kr = 1.9 Å–1, mr = 0.16m0. But let us
stress it again that the phonon and roton parts of the
spectrum are the pieces of a unified branch.

The phonon–roton spectrum terminates at around
k = 3.5 Å–1, becoming unstable with respect to the
decay of excitations into several other excitations with
lower energies [482–485].

17.4. Dynamic Structure Factor

The spectrum of collective excitations can be exper-
imentally measured by means of neutron scattering

ε k( ) . c0k, c0 2.38 10
4
 cm/s.×=

ε k( ) . ∆r

k kr–( )2

2mr

--------------------,+

described by the double differential cross section

(17.51)

where bs is the scattering length of a neutron on a
helium atom, ki and kf are the initial and final wavevec-
tors of the scattering neutron, and k and ω are the
momentum and energy transfer from the neutron to the
sample. The dynamics of the liquid are contained in the
dynamic structure factor

(17.52)

in which

(17.53)

is the density-density correlation function, with the
density operator

Using the Fourier integral

one gets

(17.54)

Employing the properties of Green functions [291], one
can find

(17.55)

Then for the dynamic structure factor (17.54) one has

(17.56)

The response function χ(k, ω), on the complex ω-plane,
possesses the spectral representation

(17.57)

in which the spectral function

(17.58)

From the properties of Green functions [291] it follows
that

(17.59)
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Hence, Eq. (17.56) can be written as

(17.60)

The latter, with the notation for the Bose function 

takes the form

(17.61)

The dynamic structure factor satisfies the following
sum rules

(17.62)

which defines the static structure factor S(k),

(17.63)

which gives the kinetic energy

(17.64)

and

(17.65)

The relation of the dynamic structure factor to the
density-density correlation function and to the density
response function means that these are the density fluc-
tuations which contribute to S(k, ω). In their turn, the
density fluctuations define the spectrum of collective
excitations, because of which the dynamic structure
factor is directly related to the latter. This relation can
be clearly illustrated using the random-phase approxi-
mation for the density response function (17.44) and
the form (17.47) for the polarization function, which
yields

(17.66)

where ε(k) = εB(k) is the spectrum of collective excita-
tions in the Bogolubov approximation (17.48). With
Eq. (17.66), the spectral function (17.58) becomes

(17.67)
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ε k( )
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Then the dynamic structure factor (17.61) is

(17.68)

For the static structure factor (17.62) one gets

(17.69)

The sum rule (17.63) is identically valid, and from
Eq. (17.65) one has

(17.70)

in agreement with the form (17.66).
Expression (17.68) shows that the dynamic struc-

ture factor has a sharp peak at the frequency ω coincid-
ing with the spectrum of collective excitations ε(k). The
delta-function shape of this peak is the result of the sim-
plicity of the approximation used. In reality, the
observed peaks are, of course, finite and can be fitted to
the measured data by means of the Lorentzian or Gaus-
sian forms.

17.5. Measurement of Condensate Fraction

The dynamic structure factor, as is shown above,
gives information on the spectrum of collective excita-
tions in liquid helium. Hohenberg and Platzman [486]
suggested that this factor can also be used for extracting
the value of the condensate fraction

(17.71)

For this purpose, one has to invoke deep-inelastic neu-
tron scattering with very high transferred momenta k,
such that the scattering could be treated as occurring on
single atoms and the scattering atoms could be assumed
to be in a free particle state. This implies that the recoil
energy k2/2m0 must be much larger than the mean
potential energy Epot of an atom,

(17.72)

For superfluid helium, with m0 = 6.64 × 10–24 g, this
gives k @ 10 Å–1, that is one should have k ≈ 100 Å–1.
Then, for the dynamic structure factor, the impulse
approximation is valid yielding

(17.73)

where Ek is defined in Eq. (17.64). Substituting the
momentum distribution

(17.74)
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in the impulse approximation (17.73), one has

(17.75)

with the terms

Hence, the existence of condensate should result in the
appearance of a sharp peak in S0(k, ω) above the broad
distribution due to Sn(k, ω).

For the deep-inelastic scattering, it is convenient to
use the West [487] scaling variable

(17.76)

and to define the so-called Compton profile

(17.77)

whose name comes from the initial usage of such vari-
ables in electron scattering. The convenience of using
the profile (17.77) is due to the fact that at high
momenta it tends to a value

(17.78)

which does not depend on k. Thus, for the impulse
approximation (17.73), one gets

(17.79)

Inverting the latter equation gives the momentum dis-
tribution

(17.80)

If this distribution would have the form (17.74), one
could directly measure the condensate fraction n0.

However, there exist several principal difficulties
prohibiting the extraction of the momentum distribu-
tion from the observed scattering. First, any experimen-
tal observation is affected by the statistical uncertainty
of the measurements. These uncertainties will translate
into uncertainties in the inferred n(k). The most striking
feature of the inferred momentum distribution is the
increase in the statistical noise near k = 0, due to the
division by k in Eq. (17.80). Even very large differences
in n(k) at small k only cause small changes in the
Compton profile J(Y). Thus, the statistical noise present
in J(Y) allows a whole family of n(k) that are consistent
with the observed data [458]. The predicted small k sin-
gular behavior makes little contribution to the observed
scattering, and with the experimental techniques now
available, will be difficult, if not impossible, to observe.
Due to the finite statistical errors inherent in any exper-
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--- ∂
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iment, the experimental results can not definitely prove
the existence of a condensate, which formally corre-
sponds to a δ-function. Some other singular, or even not
singular, behavior, but not a condensate, could be
responsible for the increase in the scattering at small k
observed in the superfluid [458]. Hence, the experi-
mental results can not rule out a ground state which
does not contain a condensate or which corresponds to
something like a smeared condensate [489]. The mea-
sured scattering is consistent with many different forms
for n(k), including models that do not include a conden-
sate at all [454, 490].

Another weak point in the attempts to measure the
condensate fraction in superfluid helium is the usage of
the impulse approximation (17.73), which assumes that
helium atoms behave as free particles. The latter
requires that the transferred momenta satisfy inequality
(17.72), being about 100 Å–1 for liquid helium. How-
ever, the majority of neutron-scattering experiments
have been performed at momentum transfers not higher
than 23 Å–1. Some experiments [491] used the trans-
ferred momenta as high as 150 Å–1, but the accuracy of
these measurements was so low that it did not allow one
to decide anything about the value of n0.

The fact that helium atoms inside a liquid are not
free but strongly interact with their surrounding leads to
what one calls the final-state effects [492–494] and the
initial-state effects [495–497]. The former can be taken
into account by defining a convolution

(17.81)

of the impulse-approximation result with a final-state
broadening F(Y) that is to be calculated from a micro-
scopic model [492, 493]. Taking account of the initial-
state effects requires to change the definition of the
scattering variable (17.76) itself [498].

One more problem which is to be taken into account
is that what one actually measures is not the profile
(17.81), but the effects of instrumental resolution must
be involved in order to determine the true scattering. In
general, the instrumental broadening is a complicated
function depending on the energy and momentum
transfer and the instrument geometry, and a simple
closed-form expression for the resolution function is
not possible. In the case of helium, an effective resolu-
tion function I(Y) can be calculated by a Monte Carlo
simulation of the spectrometer. In terms of this instru-
mental resolution function, the observed broadened
Compton profile is given by the convolution

(17.82)

where J(Y) is defined by Eq. (17.81).
In interpreting experimental scattering data, one

usually does the following [449, 499, 500]. Rather than

J Y( ) F Y Y '–( )JIA Y '( ) Y 'd

∞–

+∞

∫=

Jobs Y( ) I Y Y '–( )J Y '( ) Y ',d

∞–

+∞

∫=



790

LASER PHYSICS      Vol. 11      No. 6      2001

COURTEILLE et al.

attempt to deconvolute the instrumental resolution and
the final-state broadening, one assumes a model profile
Jmod(Y), which is substituted in Eq. (17.81) instead of
the profile (17.79). After this, one fits the convolutions
with Jmod(Y) to the observed scattering profile Jobs(Y).
The most often employed model profile [499, 500] is a
sum of Gaussians

(17.83)

whose amplitudes, widths, and common center may be
varied. This form is, certainly, not unique, and many
other forms could be used to fit the data. These two
Gaussians model the two terms in the dynamic struc-
ture factor (17.75). The term that is narrower is
assumed to model the condensate peak S0(k, ω), while
the wider Gaussian is supposed to model Sn(k, ω). Thus
for superfluid helium at T = 0.35 K, one finds [500] σ1 =
0.95 Å–1 and σ2 = 0.29 Å–1, so that the latter width
should be related to the condensate. But it is worth
noting that even for normal helium the observed scat-
tering is not well characterized by a single Gaussian,
and a sum of two Gaussians much better describes the
observed scattering. For example, for normal helium at
T = 3.5 K, one has [500] σ1 = 1 Å–1 and σ2 = 0.45 Å–1.
Therefore, the two-Gaussian model may show not the
appearance of condensate but just non-Gaussian behav-
ior of the momentum distribution [499, 500].

In this way, the original goal for much of the work
with liquid helium, a direct observation of the conden-
sate fraction, has not come to pass. In view of the cur-
rent understanding of the final-state effects in helium, it
is unlikely that this goal will ever be reached in deep
inelastic neutron scattering experiments [449, 458, 500].
While the current experimental results do not definitely
prove the existence of a condensate, they do provide
indirect evidence for its existence, which agrees with
many theoretical calculations predicting n0 ≈ 10% at
zero temperature.

Several other ways have been suggested for indi-
rectly extracting information on the value of the con-
densate fraction; the interpretation of such methods
being based on model assumptions. Sears [448] tried to
determine n0 by assuming a relation between the value
of the mean kinetic energy

at T = Tλ and that value at T < Tλ. The mean kinetic
energy could be determined by using the impulse

Jmod Y( )
A1

2πσ
--------------

Y Y0–( )2

2σ1
2

----------------------–
 
 
 

exp=

+
A2

2πσ2

----------------
Y Y0–( )2

2σ2
2

----------------------–
 
 
 

,exp

Ek〈 〉 k
2

2m0
---------n k( ) kd

2π( )3
-------------∫=

approximation for the dynamic structure factor,

(17.84)

Campbell [501] suggested to consider a relation
between the condensate fraction and the surface tension
of superfluid helium. Wyatt [502] studied quantum
evaporation from the free surface of liquid 4He. The
mentioned ways of determining the condensate frac-
tion, being based on several model assumptions, pro-
vide the upper limit for n0.

An interesting proposal was made by Cummings,
Hyland, and Rowlands [503–505] who advanced the
relation

(17.85)

assumed to be valid for r ≥ 4.5 Å–1 and connecting the
pair correlation function

(17.86)

measured at T < Tλ, with the pair correlation function
gn(r) identified as the function either just above Tλ or
that function extrapolated to the temperature under
consideration. The pair correlation function (17.86)
and the density-density correlation function (17.53) are
connected as

(17.87)

From Eqs. (17.54) and (17.62), it follows that

(17.88)

Therefore, the pair correlation function can be calcu-
lated by using Eq. (17.88) with the measured static
structure factor S(k). Then, by substituting ρn = ρ – ρ0
into the relation (17.85), one has

(17.89)

This method of calculating the condensate fraction was
employed together with the data for the pair correlation
function obtained through neutron scattering [506, 507]
and X-ray scattering techniques [508, 509]. The values
of n0, found by applying Eq. (17.89), are in good agree-
ment with those obtained by other methods. However,
the derivation of the relation (17.85) was criticized by
several authors [313, 510–512]. The main argument
against this relation is that the latter does not appropri-
ately take into account the anomalous averages existing in
a system with broken gauge symmetry. But if gauge sym-
metry is conserved, the relation (17.85) can be approxi-
mately valid [279] in the region 4 Å–1 < r < 12 Å–1.
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An accurate analysis of different experimental
methods of measuring n0 was done by Wirth and Hal-
lock [509]. They fitted each of the sets of experimental
data to the function

(17.90)

While there is little theoretical justification for the use
of this form for liquid helium, it provides a uniform
methodology for obtaining values n0(0). Summarizing
the results of various experiments, one has n0(0) ≈ 0.10
and 5 ≤ α ≤ 10.

CONCLUDING REMARKS

Bose–Einstein condensation of trapped atoms is
now a very vast and quickly developing branch of phys-
ics. Because it is so vast, it is impossible to touch, on a
reasonable level of explanation, all related directions in
one review. This especially concerns theoretical
aspects. Therefore, we preferred to concentrate on the
principal points which the theory of nonuniform Bose
systems is based on. We have tried to clearly elucidate
these main points. The choice of the most important
problems is, of course, subjective, and many interesting
questions concerning Bose atoms were left aside. The
theoretical description of the degenerate trapped Fermi
atoms [513, 514] has not been touched at all, as well as
the description of trapped Bose–Fermi mixtures [515].

The majority of theoretical considerations here have
been based on the Gross–Pitaevskii equation. Temperature
effects were only slightly touched. This is because of
the following reasons. First of all, it was necessary to
concentrate on the principal features of Bose–Einstein
condensate at zero or low temperatures, and a detailed
discussion of its thermal properties would essentially
enlarge the review. Another reason is that there are not
yet enough reliable experiments on trapped atoms with
Bose–Einstein condensates at finite temperatures
which theory could be compared with. Thermal proper-
ties of trapped atoms are to be studied more accurately,
both theoretically as well as experimentally.
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